
Copyright ©2025 The Institute of Electronics,
Information and Communication Engineers

SCIS 2025 2025 Symposium on
Cryptography and Information Security

Kokura, Japan, Jan. 28 – 31, 2025
The Institute of Electronics,

Information and Communication Engineers

On the Reference Implementation of QR-UOV and its Revised
Version

Fumitaka Hoshino∗ Hiroki Furue† Yasuhiko Ikematsu‡ Tsuyoshi Takagi§

Haruhisa Kosuge† Kimihiro Yamakoshi† Rika Akiyama† Satoshi Nakamura†

Shingo Orihara† Koha Kinjo†

Abstract: Furue et al. proposed a post-quantum signature scheme called QR-UOV, and submitted
it to the post-quantum cryptography standardization process for additional digital signature schemes.
Recently NIST announced that 14 candidates, including QR-UOV, have advanced to the second round
of the process, and encouraged the designers of QR-UOV to further optimize their implementation. In
response to this encouragement, the designers decided to tweak the specification of QR-UOV and revise
their implementation. In this work, we illustrate the details of this update and evaluate its effect.

Keywords: PQC, MPKCs, quotient ring UOV (QR-UOV), rejection sampling

1 Introduction
It used to be thought that, classical cryptography

would not be broken by quantum computers in the
foreseeable future, unless a tremendous technological
breakthrough occurred. However, in recent years, there
has been a huge investment in research into quantum
computing, and it is often said that in the not-too-
distant future, developments in quantum computing
may threaten the security of classical cryptography.
Accordingly, the Post-Quantum Cryptography (PQC)
has suddenly become the mainstream of cryptographic
research.

In December 2016, the National Institute of Stan-
dards and Technology (NIST) issued a public call for
submissions to the PQC Standardization Process in re-
sponse to the substantial development of quantum com-
puting [16].

Multivariate public key cryptography (MPKC) based
on the multivariate quadratic (MQ) problem is consid-
ered a good candidate for PQC, because a decision vari-
ant of MQ problem is proven to be NP-complete [10]
and thus schemes based on this problem are likely to
be secure in the post-quantum era.
∗ Faculty of Information Systems, University of Nagasaki, 1-1-1,

Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195,
Japan. (hoshino@sun.ac.jp)

† NTT Social Informatics Laboratories, 3-9-11, Midori-cho,
Musashino-shi, Tokyo, 180-8585, Japan. ({hiroki.furue,
hrhs.kosuge, kimihiro.yamakoshi, rika.akiyama, satoshi.naka-
mura, shingo.orihara, kouha.kinjo}@ntt.com)

‡ Institute of Mathematics for Industry, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. (ike-
matsu@imi.kyushu-u.ac.jp)

§ Department of Mathematical Informatics, The University of
Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
(takagi@g.ecc.u-tokyo.ac.jp)

The unbalanced oil and vinegar signature scheme
(UOV) [14], is a multivariate signature scheme pro-
posed by Kipnis et al. at EUROCRYPT 1999, which
has withstood various types of attacks for more than
20 years. UOV is a well-established signature scheme
owing to its short signature and short execution time.

A multilayer UOV variant Rainbow [7] was selected
as a third-round finalist in the NIST PQC project [15].
However, an attack on Rainbow proposed by Beullens
at 2022 [3] broke the security of third round parameters
and make the Rainbow scheme inefficient.

Subsequently, NIST announced the selection of the
first algorithms to be standardized, however MPKC
was never included there. Instead, NIST issued a call
for additional PQC digital signature schemes in Septem-
ber 2022. In June 2023, NIST received 40 proper can-
didates, 10 of which were based on the MQ problem,
most of them were variants of UOV.

Quotient ring UOV (QR-UOV) [8] is one of such
UOV variants, whose public key size is relatively small,
which was originally proposed by Furue et al. in ASI-
ACRYPT 2021 [9]. A tweaked version was submitted
to the NIST PQC Standardization Process later [8].

This submission includes some software code which
naively implement the algorithms in the specification
document [8]. It served to show that the scheme was
“efficient”, i.e., not infeasible. However, this implemen-
tation performed very poorly respect to the required
time and memory to sign.

Recently NIST announced that 14 candidates, in-
cluding QR-UOV, have advanced to the second round
of the standardization process, and its internal report
[1] states for QR-UOV that “NIST anticipates that the
performance could be improved and encourages the de-
signers to further optimize their implementation.”

1

In response to this encouragement, the designers de-
cided to tweak the specification of QR-UOV and revise
their implementation. In this work, we illustrate the
details of this update and evaluate its effect.

1.1 Related Works
Various problems and improvements to QR-UOV have

been published in many papers.
Hoshino et.al. suggested that the part of deriving F1

and F2 from seedsk and seedpk is the bottleneck of the
signing algorithm. [11] As an improvement, they pro-
posed the well-known technique of UOV which includes
F1 and F2 in the secret key and skips the bottleneck
part. This improvement increases the size of the secret
key but achieves a significant speed-up. [11]

Amagasa et.al. indicated that the implementation
is unlikely to benefit from vectorization by SIMD ar-
chitecture due to the polynomial structure of each el-
ement in matrices. [2] To overcome this problem, they
proposed a vectorized matrix operation of the exten-
sion field matrices, and apply to the key generation
and signing algorithm of QR-UOV. They also identified
that the matrix chain ordering in the signing algorithm
of QR-UOV specification is not optimal, and specified
an efficient order of matrix multiplication. [2]

Kannwischer et.al. pointed out the reference imple-
mentation of QR-UOV allocates huge arrays for sig-
nature generation. [13] This problem is caused by the
order of sampling defined in the specification of QR-
UOV. As a result of revising the specification, our new
implementation does not have this problems.

2 Preliminary
2.1 Basic Notions and Notations

In this work, we identify the set of integers {0, 1}
with the set of truth values. Namely 0 is interpreted as
false and 1 as truth. For a probabilistic Turing machine
Y whose input is X and output is in {0, 1}, we say Y
accepts X if Y (X) returns 1, or Y rejects X if Y (X)
returns 0. The following list describes the notions and
notations used in the following sections.

bit one of the two symbols ‘0’ or ‘1’ .
bit string an ordered sequence of bits.
octet a bit string of length 8.
octet string an ordered sequence of octets.
|| a concatenation operator for two bit

strings or for two octet strings.
Fq finite field with q elements for a prime

power q.
dxe for x a real number returns the small-

est integer greater than or equal to x.
bxc for x a real number returns the largest

integer less than or equal to x.
[n] for n a positive integer returns the set

{1, . . . , n}.

The following list is an overview of typical arrow ex-
pressions which we use to describe algorithms.

X ← Y The value of the expression Y is assigned
to the variable X.

X
◦← Y A new value X ◦ Y is assigned to the

variable X, for any binary operator ◦ ,
e.g. X

∪← Y means X ← X ∪ Y .

X
$← Y X is uniformly selected from Y , assum-

ing that Y is a set.

X
$← Y (. . .) X is randomly selected from the output

space of the probabilistic Turing machine
Y according to the distribution of Y ’s
output when Y ’s random tape is uni-
formly selected. If the Turing machine
Y takes some input tapes, appropriate
arguments are placed inside the paren-
theses.

X
$7→ Y A probabilistic Turing machine which

takes X as an input tape and outputs
Y .

X → Y All of maps from X to Y , assuming that
X and Y are sets, which is identical with
Y X .

X 7→ Y the map which returns Y for X.

We also give some notations for representation matri-
ces of elements of a quotient ring described in Subsec-
tion 2.3.

f an irreducible polynomial in Fq[x] with de-
gree `.

Φf
g an ` × ` matrix over Fq defined by equa-

tion (1) in Subsection 2.3.
Af

{
Φf

g ∈ F`×`
q

∣∣ g ∈ Fq[x]/(f)
}

.
W an ` × ` matrix over Fq such that WX is

symmetric for any X ∈ Af .
WAf {WX ∈ F`×`

q | X ∈ Af}.
Aa,b

f the set of a`× b` block matrices whose each
component is an element of Af .

W (a) the a` × a` block diagonal matrix concate-
nating W diagonally a times.

The following is a list of the system parameter to spec-
ify the concrete instance of QR-UOV signature scheme.

`, V , M positive integers.
v number of vinegar variables: v = ` · V .
m number of oil variables (equals to # of equa-

tions): m = ` ·M .
n number of variables: n = v +m.
N N = V +M .
λ security parameter.

2.2 Signature Scheme
A digital signature scheme Σ consists of three prob-

abilistic polynomial-time algorithms (KeyGen, Sign,
Verify), which are defined as follows:

2

Key generation algorithm KeyGen : 1λ
$7→ (pk, sk) ∈

({0, 1}∗)2, returns a pair of public key pk and secret
key sk for given security parameter 1λ.

Signing algorithm Sign : M, pk, sk
$7→ σ ∈ {0, 1}∗,

takes a message M ∈ {0, 1}∗ and the signer’s key
pair (pk, sk), and then generates a digital signature
σ of the signer for the message M.

Verification algorithm Verify : M, pk, σ
$7→ β ∈ {0,

1}, takes a message M ∈ {0, 1}∗, a public key pk and
a signature σ, and accepts or rejects the message M.

Let Advcomplete : N→ [0, 1] be a function as follows.

Advcomplete(λ) := Pr

β = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

M
$← {0, 1}poly(λ),

σ
$← Sign(M, pk, sk),

β
$← Verify(M, pk, σ).

 .

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is complete in λ iff Advcomplete(λ) is overwhelming in λ.
In the following sections, we regard the completeness
as a part of the syntax of signature scheme, thus we
assume implicitly that any signature schemes are com-
plete.

Let invalid be a set of messages and Opk,sk be a
signing oracle defined as follows.

Opk,sk(M) :=

σ
$← Sign(M, pk, sk),

invalid
∪← {M},

return σ.

Let A be a forger against the signature scheme Σ. We
define AdvEUF-CMA

A : N→ [0, 1] as

AdvEUF-CMA
A (λ) := Pr


β = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

invalid← ∅,

(M∗, σ∗)
$← AOpk,sk(pk),

β
$← Verify(M∗, pk, σ∗)

∧ (M∗ 6∈ invalid).


.

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is EUF-CMA in λ iff for any probabilistic polynomial-
time algorithm A, AdvEUF-CMA

A (λ) is negligible in λ.

2.3 Basic Concept of the QR-UOV
Let f ∈ Fq[x] be a polynomial in Fq of degree `.

For each element g ∈ Fq[x]/(f), there exists a matrix
Φf

g ∈ F`×`
q s.t.

(1, x, . . . , x`−1)Φf
g = (g, xg, . . . , x`−1g) ∈ (Fq[x]/(f))

`.
(1)

Let Af := {Φf
g ∈ F`×`

q | g ∈ Fq[x]/(f)}. Af is a
subalgebra of F`×`

q because

Φf
g1+g2 = Φf

g1 +Φf
g2 ,

Φf
g1g2 = Φf

g1Φ
f
g2 .

Hence an element in Af , i.e. `×` Fq-matrix can be rep-
resented as an element in Fq[x]/(f), i.e. ` elements of
Fq. One might think that this property of Af could
be available to construct a UOV variant with short
public key. However this technique cannot be applied
directly to the UOV variants with another promising
technique using symmetric matrices, since the elements
of Af are generally unstable under the transpose oper-
ation. Furue et al. solve this problem by introducing
an invertible matrix W ∈ F`×`

q s.t. WΦf
g is transpose

for any Φf
g ∈ Af , thus they propose a UOV variant

using WAf := {WΦf
g ∈ F`×`

q | Φf
g ∈ Af}, that is

QR-UOV [9]. Therefore, throughout this work, we will
identify the element g ∈ Fq[x]/(f) with its matrix form
WΦf

g ∈ WAf . When we need to distinguish them, we
write its matrix form WΦf

g as g̃ for g ∈ Fq[x]/(f), i.e.

g̃ := WΦf
g .

Moreover, for G := (gij)i∈[n1],j∈[n2] ∈ (Fq[x]/(f))
n1×n2 ,

we define

G̃ := (WΦf
gij)i∈[n1],j∈[n2] ∈ (WAf)

n1×n2 ,

where [n] := {1, . . . , n}. Similarly, for m ∈ N, we de-
note the set of integers {1, . . . ,m} as [m] in the follow-
ing sections.

3 The Round 1 QR-UOV
3.1 Key Generation

In this section, we describe the key generation algo-
rithms of the Round 1 QR-UOV according to its spec-
ification document [8]. Let v be the number of vinegar
variables, m be the number of oil variables which is
equal to the number of equations, and n = v + m.
From the notations in Subsection 2.1, the public and
secret keys of QR-UOV are represented by elements
of AN,N

f and W (N)AN,N
f :=

{
W (N) ·X |X ∈ AN,N

f

}
,

where N = n/` with the number n of variables.
The standard key generation of QR-UOV is described

as follows:

1. Choose Fi (i ∈ [m]) from W (N)AN,N
f as a sym-

metric matrix with the lower-right m ×m zero-
block.

2. Choose an invertible matrix S from AN,N
f ran-

domly.

3. Compute the public key Pi = S>FiS (i ∈ [m]).

Then, Pi (i ∈ [m]) representing the public key map are
elements of W (N)AN,N

f from the following proposition:

3

Proposition 1 (Prop. 1 in [9]). For X ∈ AN,N
f and

Y ∈W (N)AN,N
f , we have

X>Y X ∈W (N)AN,N
f .

Subsequently, we apply an improved method restrict-
ing the secret key S to a specific compact form, which
was first proposed by Czypek et al. [6]. Before describ-
ing the improved method, we prepare some notations:
For the public key Pi (i ∈ [m]) and the secret key Fi

(i ∈ [m]), we define submatrices as follows

Pi =

(
Pi,1 Pi,2

P>
i,2 Pi,3

)
,

Fi =

(
Fi,1 Fi,2

F>
i,2 0m×m

)
,

where Pi,1 and Fi,1 are symmetric v × v matrices, Pi,2

and Fi,2 are v × m matrices, and Pi,3 is a symmetric
m×m matrix. We then suppose to limit the secret key
S to the following compact form

S =

(
Iv S′

O Im

)
, (2)

where S′ is a v ×m matrix. Then, from Pi = S>FiS
(i ∈ [m]), we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2, (3)

0m×m = S′>Pi,1S
′ − P>

i,2S
′ − S′>Pi,2 + Pi,3.

By using this equation, in the improved key generation
step, Pi,1 ∈ W (V)AV,V

f , Pi,2 ∈ W (V)AV,M
f (i ∈ [m]),

and S′ ∈ AV,M
f , where V = v/` and M = m/`, are first

generated from random seeds, and Pi,3 ∈ W (M)AM,M
f

(i ∈ [m]) is computed by

Pi,3 = −S′>Pi,1S
′ + P>

i,2S
′ + S′>Pi,2.

As a result, the public key is composed of m×m ma-
trices Pi,3 (i ∈ [m]) and the 2λ-bit seed seedpk for Pi,1,
Pi,2 (i ∈ [m]), and the secret key is composed of the
2λ-bit seed seedsk for S′, where λ is the security param-
eter. The security of QR-UOV is not weakened by this
optimization, since this does not affect the distribution
of the public and secret keys. The resulting algorithm
for key generation is shown in Algorithm 1.

Algorithm 1 The Round 1 KeyGen()

Input: parameters (q, v,m, `), security parameter λ
Output: public key pk, secret key sk

1: seedpk, seedsk
$←− {0, 1}2λ

2: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)

. Pi,1 ∈W (V)AV,V
f (symmetric),

Pi,2 ∈W (V)AV,M
f

3: S′ ← Expandsk(seedsk) . S′ ∈ AV,M
f

4: for i from 1 to m do
5: Pi,3 ← −S′>Pi,1S

′ + P>
i,2S

′ + S′>Pi,2

6: end for
7: return (pk, sk) =

((
seedpk, {Pi,3}i∈[m]

)
, seedsk

)

The Round 1 specification of QR-UOV [8] defined
Expandsk and Expandpk as follows.

Expandsk This expands the seed seedsk for the secret
key to S′ ∈ AV,M

f . As we mentioned before,
this S′ can be represented as a V ×M ma-
trix over Fq[x]/(f). We sample the matrix
in row-major order and sample each poly-
nomial in Fq[x]/(f) in reverse degree order
from the constant term to the coefficient of
x`−1.

Expandpk This expands the seed seedpk for the public
key to {Pi,1}i∈[m], {Pi,2}i∈[m] where Pi,1 is a
symmetric v × v matrix in W (V)AV,V

f and
Pi,2 is a v ×m matrix in W (V)AV,M

f . Then,
this Pi,1 and Pi,2 can be represented as V ×V
and V ×M matrices over Fq[x]/(f). We here
first sample P1,1, . . . , Pm,1 and then P1,2, . . . ,
Pm,2. For each matrix, we sample in row-
major order and sample each polynomial in
Fq[x]/(f) in reverse degree order. Note that
for Pi,1 we sample only the upper-triangular
elements due to the symmetry.

3.2 Signature Generation
The signature generation of QR-UOV is mainly de-

pending on the standard signature generation of the
plain UOV: Invert the central map F by fixing v val-
ues of the vinegar variables, and then multiply S−1 in
the form of

S−1 =

(
Iv −S′

O Im

)
,

from equation (2). We here add a modification for
the EUF-CMA security proof proposed by Sakumoto
et al. [17]. See Algorithm 2 for more details.

We here describe the inversion of the central map
F in the signature generation. We first choose val-
ues for the vinegar variables y1, . . . , yv randomly. We
then choose λ-bit random salt r and compute t ∈ Fm

q

by applying a hash function Hash on the input con-
catenating a given message M and the salt r, namely
t := Hash(M||r). If the linear system for the oil vari-
ables xv+1, . . . , xn

F(y1, . . . , yv, xv+1, . . . , xn) = t, (4)

has solutions, then we obtain the signature by applying
S−1 into (y1, . . . , yv, yv+1, . . . , yn), where (yv+1, . . . ,
yn) is a randomly chosen solution of equation (4). If
there exists no solution of equation (4), then we choose
a new salt and update t until equation (4) has solu-
tions.

The main difference from the standard signature gen-
eration algorithm is that if equation (4) has no so-
lution, then we choose a new random salt instead of
choosing new vinegar variables. By doing so, the sig-
nature s satisfying P(s) = Hash(M||r) is uniformly
distributed in Fn

q , and this fact enables us to prove

4

the EUF-CMA security of QR-UOV [8]. For the effi-
ciency, we confirm that the expected number of com-
puting t = Hash(M||r) until equation (4) has solutions
is approximately 2.0 for any parameter sets by assum-
ing that equation (4) is a randomized system for xv+1,
. . . , xn.

Algorithm 2 The Round 1 Sign(M, pk, sk)

Input: message M, public key pk, secret key sk
Output: signature σ

1:
(
seedpk, {Pi,3}i∈[m]

)
← pk

2: seedsk ← sk
3: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4: S′ ← Expandsk(seedsk)
5: for i from 1 to m do
6: Fi,1 ← Pi,1

7: Fi,2 ← −Pi,1S
′ + Pi,2

8: end for
9: S ←

(
Iv S′

0m×v Im

)
10: y = (y1, . . . , yv)

> $←− Fv
q

11: L←

 2y>F1,2

...
2y>Fm,2

 . L ∈ Fm×m
q

12: u←
(
y>F1,1y, . . . ,y

>Fm,1y
)>

. u ∈ Fm
q

13: repeat
14: r

$←− {0, 1}λ
15: t← Hash(M||r) . t ∈ Fm

q

16: until Lx = t− u has solutions for x.
17: Choose one solution (yv+1, . . . , yn) ∈ Fm

q of
Lx = t− u randomly.

18: s← S−1(y1, . . . , yv, yv+1, . . . , yn)
>

19: return σ = (r, s)

3.3 Pseudo-Random Fq Sampler
Key generation and signing algorithms of QR-UOV

sample many Fq (pseudo-)random elements to gener-
ate its public-key and signature. When q is prime, an
element of Fq

∼= Z/qZ is typically represented by an
integer in {0, . . . , q−1}. While the output of a pseudo-
random number generator(PRNG) is typically in {0,
1}∗. Since the QR-UOV specification requires that q is
odd, we must convert a bit string into an integer in {0,
. . . , q − 1}.

If uniformity of random elements in Fq is not re-
quired, it is sufficient to sample a bit string of suitable
length, interpret it as an integer, divide by q, and take
the remainder. Such an Fq sampler is very fast, how-
ever it is not preferable for security proof, because it
distorts the distribution of the MQ problem on which
QR-UOV is based.

Therefore QR-UOV employed the rejection sampling,
which is well known as an exact sampling method.
The rejection sampling is a simple method of generat-
ing random numbers with an arbitrary efficiently com-
putable probability distribution, from an uniform ran-
dom number generator, which was published by John
von Neumann in the early 1950s [12]. Especially in our

cases, the logic of rejection is quite simple, since the
distribution is just a step function

p : {0, . . . , 2dlog2 qe} → [0, 1],
x 7→ δ(x < q)/q,

where
δ : {>,⊥} → {0, 1},

> 7→ 1,
⊥ 7→ 0.

The Round 1 specification specified its pseudo-random
Fq generator as follows. [8]
Many random finite field elements are used when gener-
ating keys and sampling vinegar variables. For example,
since an element of Fq[x]/(f) can be represented as a ma-
trix F`×`

q , the Expand functions in the KeyGen algorithm
would generate elements of the finite field Fq. A random
bit sequence is generated using a hash function and re-
trieved for every dlog2 qe bit to generate these elements.
By dividing a hash value into dlog2 qe bits, a sequence of
random numbers in the range of [0, 2dlog2 qe) can be ob-
tained. Even so, in the range of [0, 2dlog2 qe), q is the only
number that does not belong to Fq. Therefore, when q is
obtained from the sequence of random numbers, q should
be skipped and not chosen. Also, when obtaining the el-
ement of Fm

q , the first m numbers that are non q values
should be selected. This method, called rejection sam-
pling, . . .

4 Update Plans for Round 2
No attacks have found that threaten QR-UOV since

its submission to NIST. Therefore, we have no plans to
change the essential parts of the scheme or update the
parameters from Round 1. Consideration was given to
whether or not the technique proposed by Sakumoto
et al. [17] could be omitted to improve performance,
however, we decided to keep it.

4.1 Update for Key Generation
In round 2 we will update the specification of KeyGen()

as follows.
- In the Round 1 specification, the length of each seed

has 2λ bits. Since it was considered too long for the
security parameter, the length of each seed will be set
to λ bits in round 2.

- Round 1 rejection sampler has poor performance. More-
over, it is difficult to support for various techniques
due to the unpredictability of rejection. Therefore
we have a plan to update our rejection sampler. The
following are the considerations for this update.

- support for low memory device:
The Round 1 specification of sampling P1,1, . . . ,
Pm,1 followed by sampling P1,2, . . . , Pm,2 in Expandpk
was very problematic because Round 1 rejec-
tion Fq sampler can’t sample the subsequent el-
ements until the preceding sample is finished
due to the unpredictability of rejection. There-
fore to sample P1,2, all of P1,1, . . . , Pm,1 must
be sampled in advance. The problem noted by
Kannwischer et al. [13] is caused by this speci-
fication of Expandpk. Therefore we have a plan
to update Expandpk et.al.

5

- support for concurrent/parallel sampling:
In UOV-type signatures, operations on matrices
such as {Pi,1}i∈[m] and {Pi,2}i∈[m] can be per-
formed independently for each i. Therefore, the
matrix operations for each i can be performed
in parallel. We will introduce support for this
technique in this update.

- support for lazy sampling:
Within the signing and verification algorithms,
the matrices {Pi,1}i∈[m], {Pi,2}i∈[m] are sampled
pseudo-randomly by calling Expandpk(seedpk), then
producted with the vector s in the signature.
The vector s can be expected to have zeros in its
elements with probability 1/q. Therefore it can
be expected that some rows of matrices do not
need to be sampled with probability 1/q. Sam-
pling to achieve this speed-up by manipulating
PRNG states is called lazy sampling. [4] Due
to differences in sampling methods, the benefits
of this technique is limited in QR-UOV. There-
fore, it was decided not to introduce support for
this technique in this update.

In round 2 we will employ the following Expandpk to
address the drawback of the Round 1 specification.
Expandpk This expands the seed seedpk for the public key to

{P̄i,1}i∈[m], {P̄i,2}i∈[m] where P̄i,1 is a symmetric ma-
trix in FV ×V

q`
and P̄i,2 ∈ FV ×M

q`
. To enable the public

seed expansion to be executed in parallel, instead of
generating all matrices at once, we define the func-
tion Expandpk as a function that produces P̄i,1 and
P̄i,2 for a given counter i. Additionally, P̄i,1 and P̄i,2

are separately generated within the function to al-
low further parallel processing. Using RejSampPRG,
(v1, . . . , vn1) ∈ Fn1

q with n1 := `V (V + 1)/2 and
(v′1, . . . , v

′
n2

) ∈ Fn2
q with n2 := `V M are expanded

from seedpk. Then, ExpandSymmetricMatrixVxV and
ExpandMatrixVxM convert these two vectors to P̄i,1

and P̄i,2, respectively. For each matrix, we sample
in row-major order and sample each polynomial in
Fq[x]/(f) = Fq` in reverse degree order. Note that
for P̄i,1 we sample only the upper-triangular elements
due to the symmetry. Algorithm 3 shows the details.

Algorithm 3 The Round 2 Expandpk(seedpk, i)

Input: a public seed seedpk and counter i
Output: matrices (P̄i,1, P̄i,2) ∈ (Fq`)

V×V × (Fq`)
V×M

1: n1 := `V (V + 1)/2
2: (v1, . . . , vn1) ← RejSampPRG(seedpk, 2i − 1, τ1, n1)

. τ1 = τq,λ(n1)
3: P̄i,1 ← ExpandSymmetricMatrixVxV(v1, . . . , vn1

)
4: n2 := `V M
5: (v′1, . . . , v

′
n2
)← RejSampPRG(seedpk, 2i, τ2, n2) .

τ2 = τq,λ(n2)
6: P̄i,2 ← ExpandMatrixVxM(v′1, . . . , v

′
n2
)

7: return (P̄i,1, P̄i,2)

The resulting key generation algorithm is given in
Algorithm 5

4.2 Update for Signature Generation
In round 2 we will update the implementation of Sig-

nature Generation as follows.
- In Round 1, the signing algorithm was specified to

take the digest of the original message and salt in the
repeat loop. Because the calculation to digest the
same message with different salts may be performed
many times, when signing a very long message, effi-
cient implementations have to calculate the message
digest halfway through before looping, and save the
state of the calculation to be used over and over again.
In Round 2 specification, QR-UOV will employ the
BUFF transform [5] which does not directly sign the
original message but rather signs a message represen-
tative that is obtained by hashing of public key and
message. BUFFing also helps to improve the security
proof.

- The Round 2 implementation will employ the opti-
mized matrix chain ordering of Amagasa et.al. [2],
and some of Round 2 implementation will employ
their vectorized matrix operation method. [2],

The resulting algorithm for signature generation is
shown in Algorithm 4.

Algorithm 4 The Round 2 Sign(M, pk, sk)

Input: message M ∈ B∗, public key pk, secret key sk
Output: signature σ

1:
(
seedpk, {P̄i,3}i∈[m]

)
← pk

2: seedsk ← sk
3: S̄′ ← Expandsk(seedsk)

4: y = (y1, . . . , yv)
> $←− Fv

q

5: for i from 1 to m do
6: (P̄i,1, P̄i,2)← Expandpk(seedpk, i)

7: y′>
i ← y>W (N)φ−1

(
P̄i,1

)
8: L>

i ← 2
(
−y′>

i W
(N)φ−1

(
S̄′)+ y>W (N)φ−1

(
P̄i,2

))
9: ui ← y′>

i y
10: end for
11: L←

(
L>
1 , . . . ,L

>
m

)>
. L ∈ Fm×m

q

12: u← (u1, . . . , um)
>

. u ∈ Fm
q

13: µ← SHAKE256(seedpk‖BytesToBits(M), 512)
14: repeat
15: r

$←− {0, 1}λ
16: t← Hash(µ, r) . t ∈ Fm

q

17: until Lx = t− u has solutions for x.
18: Choose one solution (yv+1, . . . , yn)

> ∈ Fm
q of

Lx = t− u randomly.
19: s← (y1, . . . , yv, yv+1, . . . , yn)

>

+
(
(y1, . . . , yv) · φ−1

(
S̄′)>||(0, . . . , 0))>

. s ∈ Fn
q

20: return σ = (r, s)

4.3 Update for Pseudo-Random Fq Sampler
In the Round 1 implementation, the random Fq sam-

pler first reads dlog2 qe bits random number x ∈ {0,
. . . , 2dlog2 qe} from the beginning of the unread random
tape. Then it outputs x if x < q, otherwise it repeats
the same thing, consuming the next dlog2 qe bits.

6

Algorithm 5 The Round 2 KeyGen()

Output: public key pk, secret key sk

1: seedpk, seedsk
$←− {0, 1}λ

2: S̄′ ← Expandsk(seedsk) . S̄′ ∈ FV×M
q`

3: for i from 1 to m do
4: (P̄i,1, P̄i,2)← Expandpk(seedpk, i)

. P̄i,1 ∈ FV×V
q`

(symmetric), P̄i,2 ∈ FV×M
q`

5: P̄i,3 ← −S̄′>P̄i,1S̄
′ + P̄>

i,2S̄
′ + S̄′>P̄i,2

6: end for
7: return (pk, sk) =

((
seedpk, {P̄i,3}i∈[m]

)
, seedsk

)
The disadvantage of this method is the following

threefold.
- There is no guarantee of the required random tape

length.
- Since this method is bit-oriented, it requires a lot of

shift and logic operations in the software implemen-
tation, which is inefficient.

- This method packs and arranges the accepted in-
put, so that most bytes of the input random tape
are moved from their own address to other addresses.
Hence, bus usage tends to be high.

To overcome the first drawback, we will modify the
rejection sampling to allow negligible error probabil-
ity. If negligible error probability is allowed, length
of the random tape can be guaranteed. Given λ, q,
n, let τq,λ(n) be the number of elements in {0, . . . ,
2dlog2 qe − 1} required to generate n random elements
over Fq with success probability 1− 2−λ. It is derived
by

τq,λ(n) := min{t ∈ N | P (n, t, q/2dlog2 qe) ≤ 2−λ}.

P (n, t, p) is the cumulative binomial distribution,

P (n, t, p) :=

n−1∑
i=0

(
t

i

)
pi(1− p)t−i = I1−p(t− n+ 1, n),

which denotes the probability of less than n successes
in t independent Bernoulli trials of success probabil-
ity p. Iz(a, b) is called the regularized incomplete beta
function which is well known in statistics, and many nu-
merical packages provide functions to compute it. Al-
though some upper bounds for τ may be derived using
something like Chernoff bounds, τq,λ(n) can be directly
evaluated by combining such a numerical function with
some root-finding algorithm. An efficient root-finding
scheme like the Newton’s method should be employed
to evaluate it on the fly, however the bisection method
is sufficient for just obtaining pre-calculated values.
Figure 1 is a plot of τ -n ratio where λ = 256. If n
is sufficiently large, t/n approaches 1, so the increase
in random tape length consumed by rejection sampling
is insignificant.

𝑟ଵଷ✗𝑟ଵଶ𝑟ଵଵ✗𝑟ଵ଴✗𝑟ଽ𝑟𝑟଻𝑟଺✗𝑟ହ𝑟ସ𝑟ଷ✗𝑟ଶ✗𝑟ଵ𝑟଴

𝑟ଵଷ𝑟ଽ𝑟𝑟଻𝑟଺𝑟ଵଶ𝑟ହ𝑟ସ𝑟ଷ𝑟ଵଵ𝑟ଶ𝑟ଵ଴𝑟ଵ𝑟଴

𝜏 = 𝜏௤,ఒ(𝑛)

𝑛

Fig 2: reuse of input tape by overwriting rejected bytes

1

2

5 10 15 20

ta
u/

n
(lo

g
sc

al
e)

log2n

q=127q=31q=7

Fig 1: τq,λ(n)/n vs log2 n where λ = 256.

To address the second drawback, we will choose byte-
oriented sampling, which simply discard unnecessary
bits. The third drawback can be solved by overwriting
only the input bytes that should be rejected and reusing
the input tape as its output. Using this method, the
sampler can divert the input tape directly to the out-
put, thus reducing bus usage. Figure 2 illustrates this
method.

5 Performance Evaluation
We plan that AES counter mode is available as well

as SHAKE as a pseudo-random number generator in
the Round 2 specification. Table 1 show the timing
data of new implementations using AES option. For
the reader’s convenience, we refer to the timing data
of the Round 1 implementations from its specification
document [8] in Table 2. These implementations are
written in C and do not use special processor instruc-
tions, but they ignore the 32-bit environment. The ex-
perimental environment is as follows, which is exactly
the same as the environment in the Round 1 speci-
fication document. [8] It shows that the new signing
algorithm is 7-8 times faster than the Round 1 version.

Processor: AMD EPYC 7763.
Clock Speed: Boost Clock : Up to 3.5GHz, Base
Clock: 2.45GHz.
Memory: 128GB (32GB RDIMM, 3200MT/s, Dual
Rank, 8Gb base x4)

7

Operating System: Linux 5.19.0-41-generic, gcc
version 11.3.0.
Measurement Software: supercop-20221122.

Table 1: the New Implementation (Mcycles)
cate-

(q, v,m, `) keygen sign verifygory

I

(127, 156, 54, 3) 10.061 1.920 1.589
(31, 165, 60, 3) 13.977 2.657 2.284
(31, 600, 70, 10) 45.296 12.993 11.222
(7, 740, 100, 10) 112.478 32.046 28.808

III

(127, 228, 78, 3) 43.802 5.904 5.123
(31, 246, 87, 3) 59.691 8.533 7.308
(31, 890, 100, 10) 197.123 39.703 34.319
(7, 1100, 140, 10) 477.225 102.542 92.883

V

(127, 306, 105, 3) 126.797 14.051 12.138
(31, 324, 114, 3) 166.735 17.671 15.464
(31, 1120, 120, 10) 443.360 74.691 64.839
(7, 1490, 190, 10) 1574.162 253.770 223.180

Table 2: the Round 1 Implementation (Mcycles)
cate-

(q, v,m, `) keygen sign verifygory

I

(127, 156, 54, 3) 16.700 13.419 10.575
(31, 165, 60, 3) 20.223 15.813 11.614
(31, 600, 70, 10) 93.984 92.480 73.814
(7, 740, 100, 10) 177.911 167.711 99.755

III

(127, 228, 78, 3) 65.263 52.290 37.159
(31, 246, 87, 3) 85.616 65.286 42.450
(31, 890, 100, 10) 387.796 362.721 245.240
(7, 1100, 140, 10) 905.595 822.727 385.265

V

(127, 306, 105, 3) 217.373 158.856 81.309
(31, 324, 114, 3) 233.036 168.576 87.673
(31, 1120, 120, 10) 826.049 783.495 474.469
(7, 1490, 190, 10) 2528.767 2220.364 844.445

References
[1] G. Alagic, M. Bros, P. Ciadoux, D. Cooper, Q. Dang,

T. Dang, J.M. Kelsey, J. Lichtinger, C.A. Miller, D. Moody,
R. Peralta, R. Perlner, A. Robinson, H. Silberg, D. Smith-
Tone, N. Waller, and Y.K. Liu, “Status report on the first
round of the additional digital signature schemes for the
nist post-quantum cryptography standardization process,”
2024-10-24 04:10:00 2024. doi:https://doi.org/10.6028/
NIST.IR.8528.

[2] H. Amagasa, R. Ueno, and N. Homma, “Performance Im-
provement of QR-UOV Software Based on SIMD Opera-
tions.” In Proc. of SCIS 2024, 2024 Symposium on Cryp-
tography and Information Security Nagasaki, Japan, Jan.
23 - 26, 2024. IEICE, 2024.

[3] W. Beullens, “Breaking rainbow takes a weekend on a lap-
top,” Advances in Cryptology - CRYPTO 2022 - 42nd An-
nual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings,
Part II, ed. Y. Dodis and T. Shrimpton, Lecture Notes in
Computer Science, vol.13508, pp.464–479, Springer, 2022.
doi:10.1007/978-3-031-15979-4_16.

[4] W. Beullens, M.S. Chen, J. Ding, B. Gong, M.J. Kan-
nwischer, J. Patarin, B.Y. Peng, D. Schmidt, C.J.
Shih, C. Tao, and B.Y. Yang, “UOV: Unbalanced Oil

and Vinegar.” https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/round-1/spec-files/
UOV-spec-web.pdf.

[5] C. Cremers, S. Düzlü, R. Fiedler, M. Fischlin, and C. Jan-
son, “Buffing signature schemes beyond unforgeability and
the case of post-quantum signatures,” 2021 IEEE Sympo-
sium on Security and Privacy (SP), pp.1696–1714, 2021.
doi:10.1109/SP40001.2021.00093.

[6] P. Czypek, S. Heyse, and E. Thomae, “Efficient imple-
mentations of MQPKS on constrained devices,” Crypto-
graphic Hardware and Embedded Systems – CHES 2012,
ed. E. Prouff and P. Schaumont, Berlin, Heidelberg,
pp.374–389, Springer Berlin Heidelberg, 2012.

[7] J. Ding and D. Schmidt, “Rainbow, a new multivariable
polynomial signature scheme,” Applied Cryptography and
Network Security, Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005, Proceedings,
ed. J. Ioannidis, A.D. Keromytis, and M. Yung, Lecture
Notes in Computer Science, vol.3531, pp.164–175, 2005.
doi:10.1007/11496137_12.

[8] H. Furue, Y. Ikematsu, F. Hoshino, T. Takagi, K. Yasuda,
T. Miyazawa, T. Saito, and A. Nagai, “QR-UOV.” https:
//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/round-1/spec-files/qruov-spec-web.pdf.

[9] H. Furue, Y. Ikematsu, Y. Kiyomura, and T. Takagi, “A
new variant of unbalanced oil and vinegar using quotient
ring: QR-UOV,” Advances in Cryptology - ASIACRYPT
2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singa-
pore, December 6-10, 2021, Proceedings, Part IV, ed. M. Ti-
bouchi and H. Wang, Lecture Notes in Computer Sci-
ence, vol.13093, pp.187–217, Springer, 2021. doi:10.1007/
978-3-030-92068-5_7.

[10] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness, W. H.
Freeman & Co., USA, 1990.

[11] F. Hoshino, H. Furue, Y. Ikematsu, T. Takagi, K. Yasuda,
T. Miyazawa, A. Nagai, R. Akiyama, and K. Kinjo, “More
Efficient Software Implementation of QR-UOV.” In Proc.
of SCIS 2024, 2024 Symposium on Cryptography and In-
formation Security Nagasaki, Japan, Jan. 23 - 26, 2024.
IEICE, 2024.

[12] V.N. J., “Various Techniques used in Connection with
Random Digits,” National Bureau of Standards Series,
vol.12, pp.36–38, 1951. URL: https://cir.nii.ac.jp/
crid/1572261550886416128.

[13] M.J. Kannwischer, M. Krausz, R. Petri, and S.Y. Yang,
“pqm4: Benchmarking NIST additional post-quantum sig-
nature schemes on microcontrollers.” Cryptology ePrint
Archive, Paper 2024/112, 2024. URL: https://eprint.
iacr.org/2024/112.

[14] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced oil and
vinegar signature schemes,” Advances in Cryptology - EU-
ROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, ed. J. Stern, Lecture
Notes in Computer Science, vol.1592, pp.206–222, Springer,
1999. doi:10.1007/3-540-48910-X_15.

[15] “Recommendation for key management, special publication
800-57 part 1, NIST, 03/2007,” 2007.

[16] “NIST: Post-quantum cryptography CSRC..” https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization.

[17] K. Sakumoto, T. Shirai, and H. Hiwatari, “On provable se-
curity of UOV and HFE signature schemes against chosen-
message attack,” Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011, Taipei, Taiwan,
November 29 - December 2, 2011. Proceedings, ed. B. Yang,
Lecture Notes in Computer Science, vol.7071, pp.68–82,
Springer, 2011. doi:10.1007/978-3-642-25405-5_5.

8

http://dx.doi.org/https://doi.org/10.6028/NIST.IR.8528
http://dx.doi.org/https://doi.org/10.6028/NIST.IR.8528
http://dx.doi.org/10.1007/978-3-031-15979-4_16
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
http://dx.doi.org/10.1109/SP40001.2021.00093
http://dx.doi.org/10.1007/11496137_12
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
http://dx.doi.org/10.1007/978-3-030-92068-5_7
http://dx.doi.org/10.1007/978-3-030-92068-5_7
https://cir.nii.ac.jp/crid/1572261550886416128
https://cir.nii.ac.jp/crid/1572261550886416128
https://eprint.iacr.org/2024/112
https://eprint.iacr.org/2024/112
http://dx.doi.org/10.1007/3-540-48910-X_15
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
http://dx.doi.org/10.1007/978-3-642-25405-5_5

	Introduction
	Related Works

	Preliminary
	Basic Notions and Notations
	Signature Scheme
	Basic Concept of the QR-UOV

	The Round 1 QR-UOV
	Key Generation
	Signature Generation
	Pseudo-Random Fq Sampler

	Update Plans for Round 2
	Update for Key Generation
	Update for Signature Generation
	Update for Pseudo-Random Fq Sampler

	Performance Evaluation

