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Abstract: The multivariate-based unbalanced oil and vinegar signature scheme (UOV) is one of
the candidates for post-quantum cryptography (PQC). UOV is a well-established signature scheme
owing to its short signature and fast performance, but its public key is much larger than that of other
PQC candidates. At ASIACRYPT 2021, Furue et al. proposed quotient ring UOV (QR-UOV) as a
new variant of UOV, which reduces the public key size compared to the plain UOV. This QR-UOV has
been submitted to the NIST PQC standardization of additional digital signature schemes and recently
selected as a second round candidate. In this work, we discuss the security points mentioned in the first
round report of NIST. Furthermore, we provide a new method of the key recovery attacks on QR-UOV
over the base fields utilizing the QR structure. We show that this proposed method is corresponding
to existing attacks performed over the extension fields and does not reduce the security of QR-UOV
compared with the previous estimation.
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1 Introduction

Currently used public key cryptosystems such as RSA
and ECC can be broken in polynomial time using Shor’s
algorithm [26] on a quantum computer. Thus, research
on post-quantum cryptography (PQC), which is secure
against quantum computing attacks, has been attract-
ing much attention. Indeed, the U.S. National Institute
for Standards and Technology (NIST) has initiated a
PQC standardization project since 2016 [21].
Multivariate public key cryptography (MPKC), based

on the difficulty of solving a system of multivariate
quadratic polynomial equations over a finite field (the
multivariate quadratic (MQ) problem), is regarded as
a strong candidate for PQC. The MQ problem is NP-
complete [14] and is expected to be secure in the post-
quantum era. Furthermore, this MPKC is known to
be specifically suitable for building digital signature
schemes.
The unbalanced oil and vinegar signature scheme

(UOV) [17], proposed by Kipnis et al. at EUROCRYPT
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1999, is a well-known multivariate signature scheme
and has withstood various types of attacks for over 20
years. UOV is a well-established signature scheme ow-
ing to its short signature and fast performance. By
contrast, UOV has public keys much larger than those
of other PQC candidates, for example, lattice-based
signature schemes. Thus, developing a UOV variant
with a small public key is an important task.

At ASIACRYPT 2021, Furue et al. presented a new
UOV variant using a quotient ring structure called quo-
tient ring UOV (QR-UOV) [12]. In QR-UOV, a pub-
lic key is represented by block matrices in which every
ℓ×ℓ component corresponds to an element of a quotient
ring Fq[t]/(f) with f ∈ Fq[t] and deg f = ℓ. From this
construction, we can compress ℓ2 components in each
block to ℓ coefficients in Fq, and thus QR-UOV can re-
duce the public key size from the plain UOV. Note that
this QR-UOV can be considered as a generalization of
BAC-UOV [27], which is the case for f = tℓ − 1.
In 2022, NIST initiated the additional call for digital

signature proposals [23] to be considered in the PQC
standardization process. We submitted QR-UOV to
this additional call in 2023 [11]. In this call, NIST ex-
pressed particular interest in signature schemes with
short signatures and fast verification such as UOV.
Indeed, NIST accepted 40 first-round candidates in-
cluding 7 UOV-based schemes. In October 2024, NIST
announced the selection of 14 signature algorithms as
second-round candidates [24]. Among these 14 candi-
dates, 4 schemes are UOV variants, UOV, QR-UOV,
MAYO [5], SNOVA [28]. In the first round status re-
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port [24], they provide some comments to QR-UOV
especially about its security and implementation. In
this work, we discuss the security point mentioned in
the report and show that QR-UOV is sufficiently se-
cure against some cryptoanalysis methods recently pro-
posed. Further, we show brief results of our new im-
plementation.
Moreover, we provide a new method for key recov-

ery attacks on QR-UOV. This method utilizes the QR
structure used in QR-UOV, but it is performed over the
base fields Fq. By using this method, we can increase
the number of public key matrices utilized in the key
recovery attacks to m · ℓ from the original m matrices.
We also show that this proposed method is equivalent
to the existing attacks on QR-UOV over the extension
fields, called the pull-back and lifting methods. For
this reason, the proposed method does not reduce the
security of QR-UOV compared with the previous esti-
mation.

Organization The rest of this paper is organized
as follows: Section 2 recalls the construction of the
plain UOV and QR-UOV. Section 3 explains the NIST
PQC standardization of additional signatures and dis-
cusses the security and implementation of QR-UOV
mentioned in the status report. Section 4 provides a
new cryptoanalysis of QR-UOV and shows that it does
not weaken the scheme. Finally, Section 5 is devoted
to the conclusion.

2 Preliminaries

This section recalls the description of UOV [17] and
QR-UOV [12] and some cryptoanalysis of these schemes.

2.1 UOV

This subsection describes the structure of UOV. Let
q be a prime power and Fq be the finite field with q
elements. Furthermore, let v andm be positive integers
and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar variables and xv+1, . . . , xn oil
variables.
We first recall the key generation of UOV. We design

F = (f1, . . . , fm) : Fn
q → Fm

q , called a central map, such
that each fk (k = 1, . . . ,m) is a quadratic polynomial
of the form

fk(x1, . . . , xn) =

v∑
i=1

n∑
j=i

α
(k)
i,j xixj (1)

where α
(k)
i,j ∈ Fq. Next, we choose a random linear map

S : Fn
q → Fn

q to hide the structure of F . The public
key P is then provided as a polynomial map,

P = F ◦ S : Fn
q → Fm

q ,

and the secret key comprises F and S.
Next, we describe the inversion of the central map F .

When we try to find x ∈ Fn
q satisfying F(x) = y for a

given y ∈ Fm
q , we first choose random values a1, . . . , av

in Fq as the values of the vinegar variables. We can

then easily solve the equation F(a1, . . . , av, xv+1, . . . ,
xn) = y for the oil variables xv+1, . . . , xn, because this
is a linear system of m equations in m variables from
the construction of the central map (1). If there is no
solution to this equation, we choose new random values
a′1, . . . , a

′
v, and repeat the above procedure.

By using this inversion approach, the signature is
generated as follows: Given a message m ∈ Fm

q to be
signed, find a solution m1 to the equation F(x) = m,
and this gives the signature s = S−1(m1) ∈ Fn

q for the
message m. Then, the verification step is performed
by confirming whether P(s) = m.

Finally, we introduce some matrices representing the
public and secret keys of UOV. For each polynomial pi
of the public key P, there exists an n × n matrix Pi

such that pi(x) = x⊤ ·Pi ·x. Similarly, an n×n matrix
Fi can be taken for each fi with 1 ≤ i ≤ m, and an
n×n matrix S is defined to satisfy S(x) = S ·x. In gen-
eral, these matrices Pi and Fi are taken as symmetric
matrices if q is odd, and are taken as upper triangular
matrices if q is even. For these representation matrices,
based on equation (1), Fi has the following form(

∗v×v ∗v×m

∗m×v 0m×m

)
, (2)

in the case where q is odd. Furthermore, from P =
F ◦ S, we have

Pi = S⊤FiS, (i = 1, . . . ,m).

2.2 Key Recovery Attacks on UOV

This subsection recalls some existing key recovery
attacks on UOV, the Kipnis-Shamir [18], reconcilia-
tion [7], intersection [4], and rectangular MinRank [4]
attacks. In this subsection, we describe the behavior
of the key recovery attacks on UOV(q, v, o,m) which
denotes the plain UOV with v vinegar variables, o oil
variables, and m equations over Fq. Given the public
key map, these attacks try to recover the corresponding
secret key. More specifically, the key recovery attacks
aim to obtain the subspace S−1(O) of Fn

q , where O is
the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αo)

⊤ ∣∣ αi ∈ Fq

}
.

Kipnis-Shamir Attack The attack proposed by Kip-
nis and Shamir [18] chooses two invertible matrices
Wi,Wj from the set of linear combinations of the repre-
sentation matrices P1, . . . , Pm for the public key. Then,
it probabilistically recovers an element of the subspace
S−1(O) by computing the invariant subspace ofW−1

i Wj .
The complexity of the Kipnis-Shamir attack is esti-
mated as

O
(
qv−o−1 · o4

)
.

Reconciliation Attack The reconciliation attack [7]
treats a vector y of S−1(O) as variables and solves the
quadratic system y⊤Piy = 0 (i ∈ [m]). Here, the di-
mension of S−1(O) is o, and thus if we impose affine
constraints, we then solve a system of m equations in
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n − o = v variables. Parameters of UOV are gener-
ally set to satisfy v > m for the security against the
Kipnis-Shamir attack, and in this case, the system of
y⊤Piy = 0 has a large number of solutions. Therefore,
to determine a solution uniquely, we need to solve the
following system to find multiple vectors y1, . . . , yk of
S−1(O):{

y⊤j Piyj = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),
y⊤j Piyℓ = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).

On the other hand, if the number v of the vinegar vari-
ables is smaller than the number m of equations, then
the complexity of the reconciliation attack is estimated
as that of solving a quadratic system of m equations in
v variables.

Intersection Attack In [4], Beullens proposed a new
key recovery attack against UOV, called an intersection
attack. In the case of v < 2o, for an integer k ≥ 2 sat-
isfying k < v

v−o , let L1, . . . , Lk be k invertible matrices
randomly chosen from a set of linear combinations of
the representation matrices P1, . . . , Pm for the public
key. This attack then solves the following equations
for y ∈ Fn

q :{
(L−1

j y)⊤Pi(L
−1
j y) = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),

(L−1
j y)⊤Pi(L

−1
ℓ y) = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).

(3)
Note that a solution z for this system is not a vector
in S−1(O), but L−1

j z is an element of S−1(O).

Rectangular MinRank Attack The rectangular Min-
Rank attack was originally proposed for the Rainbow
scheme [6] by Beullens [4], and it tries to solve a new
MinRank problem obtained by transforming the public
key matrices of Rainbow. In [10], they show that the
rectangular MinRank is applicable to UOV(q, v, o,m)
with v < m which is the case of the transformed QR-
UOV over the extension fields.
Before describing the rectangular MinRank attack,

we introduce a way of transforming sets of matrices
used in the attack. Let (G1, . . . , Gm) be a set of n-by-

n matrices over Fq, and g
(j)
i denotes the j-th column

vector of Gi, namely,

Gi =
(
g
(1)
i g

(2)
i · · · g

(n)
i

)
∈ Mn(Fq).

Then, we define the new set (G̃1, . . . , G̃n) of n-by-m
matrices as follows:

G̃1 :=
(
g
(1)
1 g

(1)
2 · · · g

(1)
m

)
,

G̃2 :=
(
g
(2)
1 g

(2)
2 · · · g

(2)
m

)
,

...

G̃n :=
(
g
(n)
1 g

(n)
2 · · · g

(n)
m

)
.

Then, when we apply this deformation to (P1, . . . , Pm)
and (F1, . . . , Fm), we have

(P̃1, . . . , P̃n) = (S⊤F̃1, . . . , S
⊤F̃n) · S.

For parameters with v < m, it is easily seen that the
deformation matrices F̃v+1, . . . , F̃n ∈ Fn×m

q are of rank
≤ v since they have the following form:(

∗v×m

0o×m

)
.

Then, there exists a linear combination of P̃1, . . . , P̃n ∈
Fn×m
q whose rank is ≤ v, and thus, as in Rainbow, the

rectangular MinRank attack can be applied to UOV
with v < m. As a result, the rectangular MinRank
attack tries to find the vector a = (a1, . . . , an) as a
common solution to the following problems:

(i) Rank

(
n∑

i=1

aiP̃i

)
≤ v,

(ii) p1(a) = · · · = pm(a) = 0.

2.3 Description of QR-UOV

This subsection recalls the construction of QR-UOV
mainly following the notation and description for the
plain UOV in Subsection 2.1. Let ℓ be a positive integer
and take v and m as multiples of ℓ. We then define
N := n/ℓ, V := v/ℓ, and M := m/ℓ.
Before explaining the key generation, we prepare some

notations for QR-UOV. Let f be a polynomial in Fq[t]
with deg f = ℓ. For any element g of the quotient ring
Fq[t]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g

over Fq such that(
1 t · · · tℓ−1

)
Φf

g =
(
g tg · · · tℓ−1g

)
.

For any g ∈ Fq[t]/(f), the matrix Φf
g can be represented

by only ℓ elements in Fq. We let the algebra of the ma-
trices Af :=

{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[t]/(f)
}
, and this Af

is a subalgebra in the matrix algebra Fℓ×ℓ
q . For such

matrices corresponding to elements of a quotient ring,
Theorem 1 in [12] shows that there exists an invertible
matrix W ∈ Fℓ×ℓ

q such that for any X ∈ Af , WX is

symmetric. Specifically, if f has a form of tℓ − ati − 1
with a ̸= 0 and 1 ≤ i < ℓ, then the above symmetriza-
tion is realized by

W =

(
Ji

Jℓ−i

)
, (4)

where Ji :=

 1
. .
.

1

 ∈ Fi×i
q . For the subalgebra

Af , we define a subspace Aa,b
f with a, b ∈ N in Faℓ×bℓ

q

containing matrices of the following form X11 . . . X1b

...
. . .

...
Xa1 . . . Xab

 ,

where every Xij ∈ Fℓ×ℓ
q is an element of Af . Further-

more, W (a) denotes an aℓ × aℓ block diagonal matrix
concatenating W ∈ Fℓ×ℓ

q diagonally a times.
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From these notations, we can construct a quotient-
ring UOV (QR-UOV) representing public and secret

keys by elements of AN,N
f and W (N)AN,N

f := {A ·
B |A ∈ W (N), B ∈ AN,N

f }. Note that we here rep-
resent the public and secret keys by matrices as de-
scribed in Subsection 2.1. We prepare an irreducible
polynomial f ∈ Fq[t] with degree ℓ and W ∈ Fℓ×ℓ

q that
symmetrizes every element of Af . We here take f as
an irreducible polynomial for the security of the result-
ing scheme. Then, the key generation of QR-UOV is
described as follows:

1. Choose Fi (i = 1, . . . ,m) from W (N)AN,N
f as a

symmetric matrix with the lower-right m × m
zero-block like equation (2).

2. Choose an invertible matrix S from AN,N
f ran-

domly.

3. Compute the public key Pi = S⊤FiS (i = 1, . . . ,m).

Then, Pi (i = 1, . . . ,m) representing the public key

map are elements of W (N)AN,N
f from Proposition 1 in

[12]. The signing and verification processes are per-
formed in the same way as the plain UOV.

2.4 Cryptoanalysis of QR-UOV

This subsection recalls the pull-back method which
applies the key recovery attacks over the extension fields.
Another way of performing the attacks over the exten-
sion fields is called the lifting method. It is shown that
these two methods are equivalent in [11].
We here introduce a one-to-one map representing

the keys of QR-UOV as those of the plain UOV over
Fq[t]/(f) ∼= Fqℓ . In the pull-back method, after apply-
ing this transformation, we perform the key recovery
attacks on the UOV over the extension field.
For each representation matrix Pk ∈ W (N)AN,N

f of
the public key of QR-UOV, we can take ℓ matrices

P̄
(0)
k , . . . , P̄

(ℓ−1)
k ∈ FN×N

q satisfying

Pk =

ℓ−1∑
i=0

(
P̄

(i)
k ⊗WΦf

ti

)
, (5)

due to the structure of the QR-UOV public key. We
then can define an N×N matrix P̄k over Fqℓ as follows:

P̄k =

ℓ−1∑
i=0

tiP̄
(i)
k .

By using the same way, we can construct F̄1, . . . , F̄m

and S̄ corresponding to the secret key F1, . . . , Fm and
S as follows:

Fk =

ℓ−1∑
i=0

(
F̄

(i)
k ⊗WΦf

ti

)
⇒ F̄k =

ℓ−1∑
i=0

tiF̄
(i)
k ,

S =

ℓ−1∑
i=0

(
S̄(i) ⊗ Φf

ti

)
⇒ S̄ =

ℓ−1∑
i=0

tiS̄(i).

Then, it holds P̄k = S̄⊤F̄kS̄ from Pk = S⊤FkS, and F̄k

has the form as in (2). Thus, these set of P̄k, F̄k, and S̄
can be seen as the keys of the plain UOV with N vari-
ables andm equations over the extension field Fqℓ . This
transformation is clearly a bijective map from the key
space

(
{Pk}k∈[m], {Fk}k∈[m], S

)
of QR-UOV into the

key space
(
{P̄k}k∈[m], {F̄k}k∈[m], S̄

)
of the plain UOV

over the extension field Fqℓ .

3 NIST PQC Second Round Selection

This section confirms comments to QR-UOV given in
the NIST status report [24] and discusses the security
and implementation mentioned in the report.

3.1 NIST PQC Additional Call

This subsection roughly summarizes the NIST PQC
additional call for digital signatures [23], to which the
QR-UOV scheme is submitted.

NIST has initiated a PQC standardization project [21]
since 2016, and in 2022 they selected some algorithms
to be standardized [22]. Indeed, CRYSTALS-Kyber [2]
is chosen as a standardized public key encryption scheme.
Further, CRYSTALS-Dilithium [3], FALCON [8], and
SPHINCS+ [1] are chosen as standardized digital sig-
nature schemes. Except for SPHINCS+, all these schemes
are based on the computational hardness of problems
involving structured lattices, whereas SPHINCS+ is a
hash-based scheme. In 2022, NIST has called for addi-
tional digital signature proposals [23] to select schemes
based on different mathematical problems, and NIST
announced that 40 submissions were accepted as first
round candidates in July 2023. NIST recently announced
the selection of 14 signature schemes as second round
candidates [24].

In this call, NIST is specifically interested in schemes
with short signatures and fast verification. Thus, UOV
and its variants have been attracting much interest due
to their performance. Indeed, 7 schemes out of the
40 accepted first-round submissions are UOV variants,
and 4 schemes, UOV, QR-UOV, MAYO, and SNOVA,
out of the 14 second round candidates are UOV vari-
ants. Among these UOV-based schemes, QR-UOV is
considered to be a promising candidate due to its small
public key and simple construction.

In the status report of NIST [24], they provide the
following comments to QR-UOV:

A previous attempt that relied on quotient rings was
broken [13], and another candidate in the Additional
Call for Digital Signatures that incorporated the same
technique was also attacked [9, 15].

NIST maintains interest in QR-UOV for its com-
petitive performance, but the structure of QR-UOV re-
quires further study. NIST anticipates that the perfor-
mance could be improved and encourages the designers
to further optimize their implementation.

The subsections below discuss the security and im-
plementation of QR-UOV pointed out in the above
comments.
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3.2 Security Analysis of QR Structure

As mentioned in Subsection 3.1, NIST’s report to the
first round candidates expresses their concerns about
the security of the quotient ring structure of QR-UOV.
As seen in [11], the security of QR-UOV can be reduced
to the following two problems, the UOV and QR-MQ
problems. The UOV problem asks to distinguish ran-
domized quadratic systems and UOV public key sys-
tems. The QR-MQ problem asks to find a solution to
the MQ problem with the quotient ring structure. In-
deed, most of attacks [9, 15, 16, 19] recently proposed to
some UOV-based candidates are key-recovery attacks.
We clearly reveal that the key recovery attacks on QR-
UOV can be reduced to those on the plain UOV with
specific parameters. Therefore, we think that the pro-
posed parameters of QR-UOV will be secure against
key recovery attacks unless a new efficient attack on
the plain UOV is proposed. Note that our proposed
parameter sets of the first round remain secure up to
the present time, and this fact indicates the reliability
of our parameter sets of QR-UOV.
In the following, we claim that QR-UOV is secure

against some attacks mentioned in the status report.

Attack on BAC-UOV [13] Block Anti Circulant
(BAC) UOV [27] is a UOV variant using BAC ma-
trices as public key. Furue et al. [13] show that the
public key matrices of BAC-UOV can be decomposed
into two smaller parts, and we can apply some existing
attacks on smaller UOV public keys. We proposed our
QR-UOV by generalizing this BAC-UOV. Indeed, we
can regard BAC-UOV as a variant of QR-UOV with
f = tℓ − 1. As mentioned in [12], we can apply the de-
composition used in [13] to QR-UOV in the case of f is
a reducible polynomial. On the other hand, we prove
that there exists no such a decomposition in the case
where f is irreducible (See [12]), and thus QR-UOV is
secure against the attack on BAC-UOV.

Comment on VOX [9] In [10], they show that the
rectangular MinRank attack originally proposed on Rain-
bow is applicable to some UOV variants such as QR-
UOV and MAYO. In the above comment on the se-
curity of VOX [25] in PQC forum, it is pointed out
that the rectangular MinRank attack is also applicable
to the first round parameter sets of VOX and it signifi-
cantly reduces the security level of the parameters. For
QR-UOV, we originally chose our parameter sets con-
sidering the rectangular MinRank attack. Thus, this
attack does not affect the parameters of QR-UOV.

Attack on VOX [15] After the above comment on
VOX is announced, the parameters of VOX are revised
such that the rectangular MinRank attack cannot be
applied to the new parameters [20]. However, Guo et
al. [15] proposed a new MinRank attack on VOX and
showed that the revised parameter sets of VOX can
be broken with smaller complexities than the claimed
security levels. This attack is constructed by improving
the original rectangular MinRank attack and enables us

Table 1: Comparison of timing data on the NIST refer-
ence platform (Mcycles) of the parameter (q, v,m, ℓ) =
(127, 156, 54, 3) with the security level I between the
first round version and our new implementation

parameters keygen sign verify
First Round 16.700 13.419 10.575

New 10.061 1.920 1.589

to apply the MinRank attack to VOX by padding the
target matrices. On the other hand, we can apply the
original rectangular MinRank attack to QR-UOV and
it does not weaken the security as mentioned above.
We can also use the padding method against QR-UOV,
but it will not make the MinRank attack more efficient.
This is the reason that the attack proposed by Guo et
al. does not weaken the security of the parameters of
QR-UOV.

3.3 Performance Improvements

As seen in Subsection 3.1, the report of NIST [24]
also mentioned the implementation of QR-UOV. In re-
sponse to this comment, we improve our implemen-
tation from the first round versions. Indeed, Table 1
shows that the timing data can be significantly reduced
from the original implementation.

4 Key Recovery Attacks on QR-UOV

This section proposes a new method applying the key
recovery attacks on QR-UOV using the QR structure
over the base fields. Further, we compare the efficiency
of the proposed method with the existing attacks over
the extension fields.

4.1 Attacks Using Quotient-Ring Structure

This subsection provides a new way of recovering the
secret key of QR-UOV over the base fields Fq. This
method is mainly derived from the technique used in
the attack on SNOVA [16].

We here provide a way of increasing the number of
public key equations. When we multiply (Φf

t )
(N) ∈

Fn×n
q to public key matrices Pi with 1 ≤ i ≤ m from

the right side, then we have

Pi(Φ
f
t )

(N) = S⊤FiS(Φ
f
t )

(N)

= S⊤Fi(Φ
f
t )

(N)S,

due to the commutativity of Φf
g with g ∈ Fq[t]/(f).

Since (Φf
t )

(N) is a block diagonal matrix, Fi(Φ
f
t )

(N)

also has the secret key structure, i.e., the lower-right
m×m submatrix of Fi(Φ

f
t )

(N) is a zero matrix as in the

original Fi. Note that if we multiply (Φf
t )

(N)
⊤
from the

left side, then we have the same matrix as Pi(Φ
f
t )

(N)
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as follows:

(Φf
t )

(N)⊤Pi = (Φf
t )

(N)⊤S⊤W (N)F̄iS

= S⊤(Φf
t )

(N)⊤W (N)F̄iS

= S⊤W (N)(Φf
t )

(N)F̄iS

= S⊤W (N)F̄i(Φ
f
t )

(N)S,

where Fi = W (N)F̄i ∈ W (N)A
(N)
f .

From these discussions, we can use m · ℓ matrices
Pi(Φ

f
tj )

(N) with 1 ≤ i ≤ m and 0 ≤ j ≤ ℓ− 1 as public
key matrices when we apply the key recovery attacks.
Here, for each Pi with 1 ≤ i ≤ m, we can only utilize ℓ
matrices Pi(Φ

f
tj )

(N) with 0 ≤ j ≤ ℓ−1. This is because

Φf
tℓ

can be seen as an element of the Fq-space spanned

by {Φf
tj}0≤j≤ℓ−1 and we have

(Φf
ta)

(N)⊤Pi(Φ
f
tb
)(N) = Pi(Φ

f
ta+b)

(N).

By applying this method, we can use more equations
to recover the secret key than the original attack on the
base field. In Subsection 4.2 below, we will discuss its
efficiency.

4.2 Relation with Attacks over Extension Fields

As mentioned in Subsection 2.4, we can apply the
key recovery attacks over extension fields Fqℓ on QR-
UOV. This subsection shows that the proposed method
in Subsection 4.1 can be seen as attacks obtained by
naturally transforming the attack over Fqℓ to the base
field Fq.
In the attack over Fqℓ in Subsection 2.4, we use public

key matrices P̄i (1 ≤ i ≤ m) with size N -by-N over the
extension field Fqℓ . For variables x̄ ∈ FN

qℓ , these public
key matrices bring us m equations

x̄⊤P̄ix̄ = 0 (1 ≤ i ≤ m). (6)

We can clearly transform these equations into equa-
tions with n variables and m · ℓ equations over the base
field Fq. More specifically, for x ∈ Fn

q obtained by natu-

rally transforming x̄, there exist ℓmatrices P
(1)
i , . . . , P

(ℓ)
i

∈ Fn×n
q satisfying

x̄⊤P̄ix̄ =

ℓ∑
j=1

tj−1x⊤P
(j)
i x. (7)

In the following theorem, we show the equivalency be-
tween the space spanned by equations obtained from

P
(j)
i described in the above equation and obtained from

Pi(Φ
f
tj )

(N) described in Subsection 4.1.

Theorem 1. For each public key matrix Pi of QR-
UOV with 1 ≤ i ≤ m, the Fq-space spanned by ℓ
equations over Fq naturally obtained from equation (6)
as above is equal to the Fq-space spanned by equations{
x⊤Pi(Φ

f
tj )

(N)x = 0
}
0≤j≤ℓ−1

.

Proof. The above space obtained from equation (6) is
equal to the space spanned by{

(x̄⊤
matPix̄mat)1,j = 0

}
1≤j≤ℓ

,

where x̄mat ∈ Fn×ℓ
q is obtained by transforming each

element x̄i of x̄ into Φf
x̄i
. This is because

x̄⊤
matPix̄mat = WΦf

x̄⊤P̄ix̄
,

and WΦf
x̄⊤P̄ix̄

is symmetric. We then have

(x̄⊤
matPix̄mat)1,j = x⊤Pi(Φ

f
tj )

(N)x,

with 1 ≤ j ≤ ℓ from the definition of Φf
∗ , and thus we

have the above statement.

From the above theorem, we confirm that m·ℓ matri-
ces used in the proposed method in Subsection 4.1 can
be seen as the base field version of the public key matri-
ces over Fℓ

q used in the method in Subsection 2.4. This
fact indicates that the proposed method is not more ef-
fective than the original pull-back method against QR-
UOV.

We here do not discuss the details, but in the frame-
work of each key recovery attack, the proposed method
can be seen as a variant of the method over the exten-
sion field. For example, in the case of the reconcilia-
tion attack, this statement is directly derived from the
above theorem. In general, solving quadratic systems
over extension fields after transforming them into base
fields is not more efficient than the original case. This
is because we cannot utilize the structure of extension
fields if we transform the systems into base fields. As
a result, the proposed method does not weaken the se-
curity of QR-UOV from the previous analysis.

5 Conclusion

QR-UOV is a UOV variant with the quotient ring
structure reducing the public key size and has been se-
lected as a second round candidate for the NIST PQC
standardization of additional signatures. In this work,
we first check comments to QR-UOV given by NIST
and discuss the security and implementation mentioned
in the first round report. We recall that the security
of QR-UOV against key recovery attacks can be re-
duced to that of the plain UOV with specific parame-
ters. Thus, we claim that the proposed parameters of
QR-UOV are secure against some key recovery attacks
on UOV variants recently proposed. Furthermore, we
provide a new method of the key recovery attacks on
QR-UOV over the base fields utilizing the QR struc-
ture. We show that this proposed method is equivalent
to the previous attacks performed over the extension
fields and thus does not reduce the security of QR-UOV
compared with the previous estimation.
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