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1 Introduction
In December 2016, the National Institute of Stan-

dards and Technology (NIST) issued a public call for
submissions to the Post-Quantum Cryptography (PQC)
Standardization Process in response to the substantial
development of quantum computing [11].

Multivariate public key cryptography (MPKC) based
on the multivariate quadratic (MQ) problem is con-
sidered a good candidate for PQC, because a decision
variant ofMQ problem is proven to be NP-complete [7]
and thus schemes based on this problem are likely to
be secure in the post-quantum era.

The unbalanced oil and vinegar signature scheme
(UOV) [9], is a multivariate signature scheme proposed
by Kipnis et al. at EUROCRYPT 1999, which has with-
stood various types of attacks for more than 20 years.
UOV is a well-established signature scheme owing to
its short signature and short execution time.

A multilayer UOV variant Rainbow [3] was selected
as a third-round finalist in the NIST PQC project [10].
However, an attack on Rainbow proposed by Beullens
at 2022 [1] broke the security of third round parameters
and make the Rainbow scheme inefficient.
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Subsequently, NIST announced the selection of the
first algorithms to be standardized, including the three
digital signature schemes: CRYSTALS-Dilithium, FAL-
CON, and SPHINCS+, however MPKC was never in-
cluded there. Instead, NIST issued a call for additional
PQC digital signature schemes in September 2022. In
June 2023, NIST received 40 proper candidates, 10 of
which were based on the MQ problem, most of them
were variants of UOV.

Quotient ring UOV (QR-UOV) [5] is one of such
UOV variants, whose public key size is relatively small,
which was originally proposed by Furue et al. in ASI-
ACRYPT 2021 [6]. A tweaked version was submitted to
the NIST PQC Standardization Process later [5]. This
submission includes some software code which naively
implements the algorithms in the specification docu-
ment [5].

This implementation has extremely compact form of
signing key whose length is only 64 ∼ 128 bytes, how-
ever it slow down the signing process instead. While it
is preferable for the secret to be as compact as possible,
redundant forms of signing keys can greatly speed up
the signing process. In fact, other UOV variants have
such a key form [12].

There is a trade-off between the compactness of sign-
ing key and the speed of the signing process. For ap-
plications where signing speed is critical, it may not be
a problem if the signing key is somewhat redundant.
In this work, we investigate this trade-off, implement
QR-UOV with a redundant key form, and evaluate its
performance on some x86 environments.
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2 Preliminary
2.1 Basic Notions and Notations

In this work, we identify the set of integers {0, 1}
with the set of truth values. Namely 0 is interpreted as
false and 1 as truth. For a probabilistic Turing machine
Y whose input is X and output is in {0, 1}, we say Y
accepts X if Y (X) returns 1, or Y rejects X if Y (X)
returns 0. The following list describes the notions and
notations used in the following sections.

bit one of the two symbols ‘0’ or ‘1’ .
bit string an ordered sequence of bits.
octet a bit string of length 8.
octet string an ordered sequence of octets.
|| a concatenation operator for two bit

strings or for two octet strings.
Fq finite field with q elements for a prime

power q.
dxe for x a real number returns the small-

est integer greater than or equal to x.
bxc for x a real number returns the largest

integer less than or equal to x.
[n] for n a positive integer returns the set

{1, . . . , n}.

The following list is an overview of typical arrow ex-
pressions which we use to describe algorithms.

X ← Y The value of the expression Y is assigned
to the variable X.

X
◦← Y A new value X ◦ Y is assigned to the

variable X, for any binary operator ◦ ,
e.g. X

∪← Y means X ← X ∪ Y .

X
$← Y X is uniformly selected from Y , assum-

ing that Y is a set.

X
$← Y (. . .) X is randomly selected from the output

space of the probabilistic Turing machine
Y according to the distribution of Y ’s
output when Y ’s random tape is uni-
formly selected. If the Turing machine
Y takes some input tapes, appropriate
arguments are placed inside the paren-
theses.

X
$7→ Y A probabilistic Turing machine which

takes X as an input tape and outputs
Y .

X → Y All of maps from X to Y , assuming that
X and Y are sets, which is identical with
Y X .

X 7→ Y the map which returns Y for X.

We also give some notations for representation matri-
ces of elements of a quotient ring described in Subsec-
tion 2.3.

f an irreducible polynomial in Fq[x] with de-
gree `.

Φf
g an ` × ` matrix over Fq defined by equa-

tion (1) in Subsection 2.3.
Af

{
Φf

g ∈ F`×`
q

∣∣ g ∈ Fq[x]/(f)
}

.
W an ` × ` matrix over Fq such that WX is

symmetric for any X ∈ Af .
WAf {WX ∈ F`×`

q | X ∈ Af}.
Aa,b

f the set of a`× b` block matrices whose each
component is an element of Af .

W (a) the a` × a` block diagonal matrix concate-
nating W diagonally a times.

The following is a list of the system parameter to spec-
ify the concrete instance of QR-UOV signature scheme.

`, V , M positive integers.
v number of vinegar variables: v = ` · V .
m number of oil variables (equals to # of equa-

tions): m = ` ·M .
n number of variables: n = v +m.
N N = V +M .
λ security parameter.

2.2 Signature Scheme
A digital signature scheme Σ consists of three prob-

abilistic polynomial-time algorithms (KeyGen, Sign,
Verify), which are defined as follows:

Key generation algorithm KeyGen : 1λ
$7→ (pk, sk) ∈

({0, 1}∗)2, returns a pair of public key pk and secret
key sk for given security parameter 1λ.

Signing algorithm Sign : M, pk, sk
$7→ σ ∈ {0, 1}∗,

takes a message M ∈ {0, 1}∗ and the signer’s key
pair (pk, sk), and then generates a digital signature
σ of the signer for the message M.

Verification algorithm Verify : M, pk, σ
$7→ β ∈ {0,

1}, takes a message M ∈ {0, 1}∗, a public key pk and
a signature σ, and accepts or rejects the message M.

Let Advcomplete : N→ [0, 1] be a function as follows.

Advcomplete(λ) := Pr

β = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

M
$← {0, 1}poly(λ),

σ
$← Sign(M, pk, sk),

β
$← Verify(M, pk, σ).

 .

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is complete in λ iff Advcomplete(λ) is overwhelming in λ.
In the following sections, we regard the completeness
as a part of the syntax of signature scheme, thus we
assume implicitly that any signature schemes are com-
plete.

Let invalid be a set of messages and Opk,sk be a
signing oracle defined as follows.

Opk,sk(M) :=
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σ
$← Sign(M, pk, sk),

invalid
∪← {M},

return σ.

Let A be a forger against the signature scheme Σ. We
define AdvEUF-CMA

A : N→ [0, 1] as

AdvEUF-CMA
A (λ) := Pr


β = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

invalid← ∅,

(M∗, σ∗)
$← AOpk,sk(pk),

β
$← Verify(M∗, pk, σ∗)

∧ (M∗ 6∈ invalid).


.

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is EUF-CMA in λ iff for any probabilistic polynomial-
time algorithm A, AdvEUF-CMA

A (λ) is negligible in λ.

2.3 Basic Concept of the QR-UOV
Let f ∈ Fq[x] be a polynomial in Fq of degree `.

For each element g ∈ Fq[x]/(f), there exists a matrix
Φf

g ∈ F`×`
q s.t.

(1, x, . . . , x`−1)Φf
g = (g, xg, . . . , x`−1g) ∈ (Fq[x]/(f))

`.
(1)

Let Af := {Φf
g ∈ F`×`

q | g ∈ Fq[x]/(f)}. Af is a
subalgebra of F`×`

q because

Φf
g1+g2 = Φf

g1 +Φf
g2 ,

Φf
g1g2 = Φf

g1Φ
f
g2 .

Hence an element in Af , i.e. `×` Fq-matrix can be rep-
resented as an element in Fq[x]/(f), i.e. ` elements of
Fq. One might think that this property of Af could
be available to construct a UOV variant with short
public key. However this technique cannot be applied
directly to the UOV variants with another promising
technique using symmetric matrices, since the elements
of Af are generally unstable under the transpose oper-
ation. Furue et al. solve this problem by introducing
an invertible matrix W ∈ F`×`

q s.t. WΦf
g is transpose

for any Φf
g ∈ Af , thus they propose a UOV variant

using WAf := {WΦf
g ∈ F`×`

q | Φf
g ∈ Af}, that is

QR-UOV [6]. Therefore, throughout this work, we will
identify the element g ∈ Fq[x]/(f) with its matrix form
WΦf

g ∈ WAf . When we need to distinguish them, we
write its matrix form WΦf

g as g̃ for g ∈ Fq[x]/(f), i.e.

g̃ := WΦf
g .

Moreover, for G := (gij)i∈[n1],j∈[n2] ∈ (Fq[x]/(f))
n1×n2 ,

we define

G̃ := (WΦf
gij )i∈[n1],j∈[n2] ∈ (WAf )

n1×n2 ,

where [n] := {1, . . . , n}. Similarly, for m ∈ N, we de-
note the set of integers {1, . . . ,m} as [m] in the follow-
ing sections.

3 Algorithms of QR-UOV [5]
In this section, we describe the algorithms of QR-

UOV signature scheme according to its specification
document [5].

3.1 Key Generation
Let v be the number of vinegar variables, m be the

number of oil variables which is equal to the num-
ber of equations, and n = v + m. From the nota-
tions in Subsection 2.1, the public and secret keys of
QR-UOV are represented by elements of AN,N

f and
W (N)AN,N

f :=
{
W (N) ·X |X ∈ AN,N

f

}
, where N =

n/` with the number n of variables.
The standard key generation of QR-UOV is described

as follows:

1. Choose Fi (i ∈ [m]) from W (N)AN,N
f as a sym-

metric matrix with the lower-right m ×m zero-
block.

2. Choose an invertible matrix S from AN,N
f ran-

domly.

3. Compute the public key Pi = S>FiS (i ∈ [m]).

Then, Pi (i ∈ [m]) representing the public key map are
elements of W (N)AN,N

f from the following proposition:

Proposition 1 (Prop. 1 in [6]). For X ∈ AN,N
f and

Y ∈W (N)AN,N
f , we have

X>Y X ∈W (N)AN,N
f .

Subsequently, we apply an improved method restrict-
ing the secret key S to a specific compact form, which
was first proposed by Czypek et al. [2]. Before describ-
ing the improved method, we prepare some notations:
For the public key Pi (i ∈ [m]) and the secret key Fi

(i ∈ [m]), we define submatrices as follows

Pi =

(
Pi,1 Pi,2

P>
i,2 Pi,3

)
,

Fi =

(
Fi,1 Fi,2

F>
i,2 0m×m

)
,

where Pi,1 and Fi,1 are symmetric v × v matrices, Pi,2

and Fi,2 are v × m matrices, and Pi,3 is a symmetric
m×m matrix. We then suppose to limit the secret key
S to the following compact form

S =

(
Iv S′

O Im

)
, (2)

where S′ is a v ×m matrix. Then, from Pi = S>FiS
(i ∈ [m]), we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2, (3)

0m×m = S′>Pi,1S
′ − P>

i,2S
′ − S′>Pi,2 + Pi,3.
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Algorithm 1 KeyGen()

Input: parameters (q, v,m, `), security parameter λ
Output: public key pk, secret key sk

1: seedpk, seedsk
$←− {0, 1}2λ

2: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)

. Pi,1 ∈W (V )AV,V
f (symmetric),

Pi,2 ∈W (V )AV,M
f

3: S′ ← Expandsk(seedsk) . S′ ∈ AV,M
f

4: for i from 1 to m do
5: Pi,3 ← −S′>Pi,1S

′ + P>
i,2S

′ + S′>Pi,2

6: end for
7: return (pk, sk) =

((
seedpk, {Pi,3}i∈[m]

)
, seedsk

)

By using this equation, in the improved key generation
step, Pi,1 ∈ W (V )AV,V

f , Pi,2 ∈ W (V )AV,M
f (i ∈ [m]),

and S′ ∈ AV,M
f , where V = v/` and M = m/`, are first

generated from random seeds, and Pi,3 ∈ W (M)AM,M
f

(i ∈ [m]) is computed by

Pi,3 = −S′>Pi,1S
′ + P>

i,2S
′ + S′>Pi,2.

As a result, the public key is composed of m×m ma-
trices Pi,3 (i ∈ [m]) and the 2λ-bit seed seedpk for Pi,1,
Pi,2 (i ∈ [m]), and the secret key is composed of the
2λ-bit seed seedsk for S′, where λ is the security param-
eter. The security of QR-UOV is not weakened by this
optimization, since this does not affect the distribution
of the public and secret keys.

We here use the following two functions Expandsk and
Expandpk to expand the public and secret keys from
randomly chosen seeds

Expandsk This expands the seed seedsk for the secret
key to S′ ∈ AV,M

f . As we mentioned before,
this S′ can be represented as a V ×M ma-
trix over Fq[x]/(f). We sample the matrix
in row-major order and sample each poly-
nomial in Fq[x]/(f) in reverse degree order
from the constant term to the coefficient of
x`−1.

Expandpk This expands the seed seedpk for the public
key to {Pi,1}i∈[m], {Pi,2}i∈[m] where Pi,1 is a
symmetric v × v matrix in W (V )AV,V

f and
Pi,2 is a v ×m matrix in W (V )AV,M

f . Then,
this Pi,1 and Pi,2 can be represented as V ×V
and V ×M matrices over Fq[x]/(f). We here
first sample P1,1, . . . , Pm,1 and then P1,2, . . . ,
Pm,2. For each matrix, we sample in row-
major order and sample each polynomial in
Fq[x]/(f) in reverse degree order. Note that
for Pi,1 we sample only the upper-triangular
elements due to the symmetry.

3.2 Signature Generation
The signature generation of QR-UOV is mainly de-

pending on the standard signature generation of the
plain UOV: Invert the central map F by fixing v val-
ues of the vinegar variables, and then multiply S−1 in
the form of

S−1 =

(
Iv −S′

O Im

)
,

from equation (2). We here add a modification for
the EUF-CMA security proof proposed by Sakumoto
et al. [13]. See Algorithm 2 for more details.

We here describe the inversion of the central map
F in the signature generation. We first choose val-
ues for the vinegar variables y1, . . . , yv randomly. We
then choose λ-bit random salt r and compute t ∈ Fm

q

by applying a hash function Hash on the input con-
catenating a given message M and the salt r, namely
t := Hash(M||r). If the linear system for the oil vari-
ables xv+1, . . . , xn

F(y1, . . . , yv, xv+1, . . . , xn) = t, (4)

has solutions, then we obtain the signature by applying
S−1 into (y1, . . . , yv, yv+1, . . . , yn), where (yv+1, . . . ,
yn) is a randomly chosen solution of equation (4). If
there exists no solution of equation (4), then we choose
a new salt and update t until equation (4) has solu-
tions.

The main difference from the standard signature gen-
eration algorithm is that if equation (4) has no so-
lution, then we choose a new random salt instead of
choosing new vinegar variables. By doing so, the sig-
nature s satisfying P(s) = Hash(M||r) is uniformly
distributed in Fn

q , and this fact enables us to prove
the EUF-CMA security of QR-UOV [5]. For the effi-
ciency, we confirm that the expected number of com-
puting t = Hash(M||r) until equation (4) has solutions
is approximately 2.0 for any parameter sets by assum-
ing that equation (4) is a randomized system for xv+1,
. . . , xn.

3.3 Signature Verification
The signature verification of QR-UOV is the same

as that of the plain UOV. Given the public key pk, a
message M, and a signature σ = (r, s), the authenticity
of the signature is checked as follows:

• Use the hash function Hash to compute t = Hash(M||r).

• Compute t′ ∈ Fm
q by substituting the signature

s ∈ Fn
q for the public key map P (namely t′ =

P(s)).

If t = t′ holds, the signature σ is accepted, otherwise
it is rejected. See Algorithm 3 for more details.

4 QR-UOV with redundant key
As in the previous section, QR-UOV employed a

compact key form introduced by Czypek et al. [2, 5].
We would like to relax this compaction with respect to
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Algorithm 2 Sign(M, pk, sk)

Input: message M, public key pk, secret key sk
Output: signature σ

1:
(
seedpk, {Pi,3}i∈[m]

)
← pk

2: seedsk ← sk
3: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4: S′ ← Expandsk(seedsk)
5: for i from 1 to m do
6: Fi,1 ← Pi,1

7: Fi,2 ← −Pi,1S
′ + Pi,2

8: end for
9: S ←

(
Iv S′

0m×v Im

)
10: y = (y1, . . . , yv)

> $←− Fv
q

11: L←

 2y>F1,2

...
2y>Fm,2

 . L ∈ Fm×m
q

12: u←
(
y>F1,1y, . . . ,y

>Fm,1y
)>

. u ∈ Fm
q

13: repeat
14: r

$←− {0, 1}λ
15: t← Hash(M||r) . t ∈ Fm

q

16: until Lx = t− u has solutions for x.
17: Choose one solution (yv+1, . . . , yn) ∈ Fm

q of Lx =
t− u randomly.

18: s← S−1(y1, . . . , yv, yv+1, . . . , yn)
>

19: return σ = (r, s)

signing keys in this section. Algorithm 4 is a relaxed
version of Algorithm 1, which returns

sk′ =
(
S′, {Fi,1}i∈[m], {Fi,2}i∈[m]

)
,

instead of sk = seedsk. Algorithm 5 is the correspond-
ing signing algorithm.

The computational cost of Algorithm 4 is almost the
same as that of Algorithm 1. However the size of sk′ is
much greater than the size of sk.

The actual signing key for Algorithm 2 is a concate-
nation of seedsk and seedpk, requiring only 4λ bits in to-
tal, while the signing key of Algorithm 5 is a concatena-
tion of S′ ∈ (F`

q)
V×M , {Fi,1}i∈[m] ∈ (F`

q)
V×V×m, and

{Fi,2}i∈[m] ∈ (F`
q)

V×M×m, which requirs at least

dm · v · (1 +m+ (v + `)/2) · `−1 · log2 qe

bits in total. The sizes of signing keys for concrete
parameters are listed in Table 1. In fact, the actual
memory size for the signing key of Algorithm 5 can
be much larger than that due to alignment and other
effects.

On the other hand, the computational cost of Algo-
rithm 5 is much smaller than that of Algorithm 2.

Columns of “sign2” in table 1 show the performance
results for two software implementations of the Algo-
rithm 5 written in C for 64-bit environments. One uses

Algorithm 3 Verify(M, pk, σ)

Input: message M, public key pk, signature σ
Output: accept or reject

1:
(
seedpk, {Pi,3}i∈[m]

)
← pk

2: (r, s)← σ
3: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)
4: for i from 1 to m do
5: Pi ←

(
Pi,1 Pi,2

P>
i,2 Pi,3

)
6: end for
7: t← Hash(M||r)
8: t′ ←

(
s>P1s, . . . , s

>Pms
)>

9: return accept if t = t′ and reject otherwise.

Algorithm 4 KeyGen2()

Input: parameters (q, v,m, `), security parameter λ
Output: public key pk, secret key sk′

1: seedpk, seedsk
$←− {0, 1}2λ

2: {Pi,1}i∈[m], {Pi,2}i∈[m] ← Expandpk(seedpk)

. Pi,1 ∈W (V )AV,V
f (symmetric),

Pi,2 ∈W (V )AV,M
f

3: S′ ← Expandsk(seedsk) . S′ ∈ AV,M
f

4: for i from 1 to m do
5: Fi,1 ← Pi,1

6: Fi,2 ← −Pi,1S
′ + Pi,2

7: Pi,3 ← S′>Fi,2 + P>
i,2S

′

8: end for
9: return (pk, sk′) =

10:
((
seedpk, {Pi,3}i∈[m]

)
,
(
S′, {Fi,1}i∈[m], {Fi,2}i∈[m]

))

avx2 intrinsics and the other does not use special pro-
cessor instructions. For the reader’s convenience, we
refer to the timing data of keygen, sign and verify from
the specification document [5]. The experimental envi-
ronment is as follows, which is exactly the same as the
environment in the specification document [5] except
for stacksize limit.

Processor: AMD EPYC 7763.
Clock Speed: Boost Clock : Up to 3.5GHz,
Base Clock: 2.45GHz.
Memory: 128GB (32GB RDIMM, 3200MT/s,
Dual Rank, 8Gb base x4)
Operating System: Linux 5.19.0-41-generic, gcc
version 11.3.0.
Measurement Software: supercop-20221122.
Stacksize Limit: unlimited.

For more comparison, we refer to the timing data of
another UOV variant called VOX from its specification
document [12], shown in table 2. Similar results are
obtained despite the fact that the scheme, implemen-
tation and experimental environment are all different.
See [12] for more details on VOX.
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Table 1: Timing data and sizes of signing keys of QR-UOV (Mcycles)

category (q, v,m, `) keygen sign sign2 sign2 verify 4λ |sk′|
(avx2) (C) (bits) (bits)

I

(127, 156, 54, 3) 16.700 13.419 0.614 0.856 10.575 512 2639459
(31, 165, 60, 3) 20.223 15.813 0.748 1.117 11.614 512 2370583
(31, 600, 70, 10) 93.984 92.480 9.070 6.808 73.814 512 7823667
(7, 740, 100, 10) 177.911 167.711 11.473 11.813 99.755 512 9888627

III

(127, 228, 78, 3) 65.263 52.290 1.664 2.542 37.159 768 8057926
(31, 246, 87, 3) 85.616 65.286 2.227 3.429 42.450 768 7510438

(31, 890, 100, 10) 387.796 362.721 26.084 20.001 245.240 768 24294884
(7, 1100, 140, 10) 905.595 822.727 39.958 36.687 385.265 768 30090353

V

(127, 306, 105, 3) 217.373 158.856 5.543 6.464 81.309 1024 19498116
(31, 324, 114, 3) 233.036 168.576 5.001 7.556 87.673 1024 16987405
(31, 1120, 120, 10) 826.049 783.495 49.494 36.816 474.469 1024 45676898
(7, 1490, 190, 10) 2528.767 2220.364 89.971 84.278 844.445 1024 74787121

Algorithm 5 Sign2(M, sk′)

Input: message M, secret key sk′

Output: signature σ
1:

(
S′, {Fi,1}i∈[m], {Fi,2}i∈[m]

)
← sk′

2: S ←
(

Iv S′

0m×v Im

)
3: y = (y1, . . . , yv)

> $←− Fv
q

4: L←

 2y>F1,2

...
2y>Fm,2

 . L ∈ Fm×m
q

5: u←
(
y>F1,1y, . . . ,y

>Fm,1y
)>

. u ∈ Fm
q

6: repeat
7: r

$←− {0, 1}λ
8: t← Hash(M||r) . t ∈ Fm

q

9: until Lx = t− u has solutions for x.
10: Choose one solution (yv+1, . . . , yn) ∈ Fm

q of Lx =
t− u randomly.

11: s← S−1(y1, . . . , yv, yv+1, . . . , yn)
>

12: return σ = (r, s)
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