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Abstract: The multivariate-based unbalanced oil and vinegar signature scheme (UOV) is expected
to be one of the candidates for post-quantum cryptography (PQC). UOV is a well-established signature
scheme owing to its short signature and execution time. However, its public key is much larger than
that of other PQC candidates. At ASIACRYPT 2021, Furue et al. proposed quotient ring UOV (QR-
UOV) as a new variant of UOV, which reduces the public key size compared to the plain UOV. This
QR-UOV has been submitted to the NIST additional call for digital signature schemes. For the QR-
UOV scheme, there have been proposed two methods of recovering the secret key by using the quotient
ring structure. In this paper, we show that these two methods are essentially the same and the key
recovery attacks using the quotient ring structure are more efficient than the plain key recovery attacks.
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1 Introduction

Currently used public key cryptosystems such as RSA
and ECC can be broken in polynomial time using Shor’s
algorithm [22] on a quantum computer. Thus, research
on post-quantum cryptography (PQC), which is secure
against quantum computing attacks, has been attract-
ing much attention. Indeed, the U.S. National Institute
for Standards and Technology (NIST) has initiated a
PQC standardization project since 2016 [16].
Multivariate public key cryptography (MPKC), based

on the difficulty of solving a system of multivariate
quadratic polynomial equations over a finite field (the
multivariate quadratic (MQ) problem), is regarded as
a strong candidate for PQC. The MQ problem is NP-
complete [12] and is thus expected to be secure in the
post-quantum era. Furthermore, this MPKC is known
to be specifically suitable for building digital signature
schemes.
The unbalanced oil and vinegar signature scheme

(UOV) [13], proposed by Kipnis et al. at EUROCRYPT
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1999, is a well-known multivariate signature scheme
and has withstood various types of attacks for over 20
years. Indeed, a multilayer UOV variant Rainbow [6],
which is weakened by an attack proposed by Beullens
at CRYPTO 2022 [5], was selected as a third-round
finalist in the NIST PQC project [17]. UOV is a well-
established signature scheme owing to its short signa-
ture and execution time. By contrast, UOV has public
keys much larger than those of other PQC candidates,
for example, lattice-based signature schemes. Thus, de-
veloping a UOV variant with a small public key is an
important task.
At ASIACRYPT 2021, Furue et al. presented a new

UOV variant using a quotient ring structure called quo-
tient ring UOV (QR-UOV) [11]. In QR-UOV, a pub-
lic key is represented by block matrices in which every
ℓ×ℓ component corresponds to an element of a quotient
ring Fq[x]/(f) with f ∈ Fq[x] and deg f = ℓ. From this
construction, we can compress ℓ2 components in each
block to ℓ coefficients in Fq, and thus QR-UOV can
reduce the public key size from the plain UOV. Note
that this QR-UOV can be considered as a generaliza-
tion of BAC-UOV [23], which is the case for f = xℓ−1.
Furthermore, this QR-UOV has been recently submit-
ted to the call for additional digital signature schemes
for NIST PQC standardization [19], and in this sub-
mission, four parameters have been selected from nine
parameters proposed in SCIS 2023 [10] for each secu-
rity level. Thus, the detailed analysis of the security of
QR-UOV is our important task.
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Our Contributions For the QR-UOV, there have
been proposed two methods of recovering the secret key
by using the quotient ring structure. One is the pull-
back method which directly transforms block matrices
with QR-structure into smaller matrices over extension
fields. Another one is the lifting method which trans-
forms block matrices with QR-structure into diagonal
block matrices over extension fields. In this paper, we
show that these two methods are essentially the same.
Furthermore, we show that the key recovery attacks us-
ing the quotient ring structure are more efficient than
the plain key recovery attacks over the base field.

Organization The rest of this paper is organized as
follows: Section 2 and 3 recalls the plain UOV and QR-
UOV, respectively. Section 4 recalls two methods for
transforming the public and secret key maps of QR-
UOV into extension fields and shows their equivalence.
Finally, Section 5 is devoted to the conclusion.

2 Unbalanced Oil and Vinegar (UOV)

This subsection recalls the description of UOV and
some known attacks on the scheme.

2.1 Description

This section describes the structure of the unbal-
anced oil and vinegar signature scheme (UOV) [13].
Let q be a prime power and Fq be the finite field with q
elements. Furthermore, let v andm be positive integers
and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar variables and xv+1, . . . , xn oil
variables.
We first recall the key generation of UOV as follows:

We design F = (f1, . . . , fm) : Fn
q → Fm

q , called a central
map, such that each fk (k = 1, . . . ,m) is a quadratic
polynomial of the form

fk(x1, . . . , xn) =

v∑
i=1

n∑
j=i

α
(k)
i,j xixj (1)

where α
(k)
i,j ∈ Fq. Next, we choose a random linear map

S : Fn
q → Fn

q to hide the structure of F . The public
key P is then provided as a polynomial map,

P = F ◦ S : Fn
q → Fm

q ,

and the secret key comprises F and S.
Next, we describe the inversion of the central map

F . When we try to find x ∈ Fn
q satisfying F(x) = y

for a given y ∈ Fm
q , we first choose random values

a1, . . . , av in Fq as the values of the vinegar variables.
We can then easily obtain a solution for the equation
F(a1, . . . , av, xv+1, . . . , xn) = y, because this is a lin-
ear system of m equations in m oil variables from the
construction of the central map (1). If there is no so-
lution to this equation, we choose new random values
a′1, . . . , a

′
v, and repeat the above procedure.

By using this inversion approach, the signature is
generated as follows: Given a message m ∈ Fm

q to be

signed, find a solution m1 to the equation F(x) = m,
and this gives the signature s = S−1(m1) ∈ Fn

q for the
message m. Then, the verification step is performed
by confirming whether P(s) = m.

Finally, we introduce matrices representing the pub-
lic and secret keys of UOV. For each polynomial pi of
the public key P, there exists an n× n matrix Pi such
that pi(x) = x⊤ · Pi · x. Similarly, an n× n matrix Fi

can be taken for each fi with 1 ≤ i ≤ m, and an n× n
matrix S is defined to satisfy S(x) = S · x. In gen-
eral, these matrices Pi and Fi are taken as symmetric
matrices if q is odd, and are taken as upper triangular
matrices if q is even. For these representation matrices,
based on equation (1), Fi has the following form(

∗v×v ∗v×m

∗m×v 0m×m

)
, (2)

in the case where q is odd. Furthermore, from P =
F ◦ S, we have

Pi = S⊤FiS, (i = 1, . . . ,m).

2.2 Key Recovery Attacks on UOV

This subsection recalls some existing key recovery
attacks on UOV, the Kipnis-Shamir [14], reconcilia-
tion [7], and intersection [4] attacks. In this subsection,
we describe the behavior of the key recovery attacks on
UOV(q, v, o,m) which denotes the plain UOV with v
vinegar variables, o oil variables, and m equations over
Fq. Given the public key map, these attacks try to re-
cover the corresponding secret key. More specifically,
the key recovery attacks aim to obtain the subspace
S−1(O) of Fn

q , where O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αo)

⊤ ∣∣ αi ∈ Fq

}
.

Kipnis-Shamir Attack The Kipnis-Shamir attack [14]
chooses two invertible matrices Wi,Wj from the set
of linear combinations of the representation matrices
P1, . . . , Pm for the public key. Then, it probabilistically
recovers a part of the subspace S−1(O) by computing
the invariant subspace of W−1

i Wj . The complexity of
the Kipnis-Shamir attack is estimated as

O
(
qv−o−1 · o4

)
.

Reconciliation Attack The reconciliation attack [7]
treats a vector y of S−1(O) as variables and solves the
quadratic system y⊤Piy = 0 (i ∈ [m]). Here, the di-
mension of S−1(O) is o, and thus if we impose affine
constraints, we then solve a system of m equations in
n − o = v variables. Parameters of UOV are gener-
ally set to satisfy v > m for the security against the
Kipnis-Shamir attack, and in this case, the system of
y⊤Piy = 0 has a large number of solutions. Therefore,
to determine a solution uniquely, we need to solve the
following system to find multiple vectors y1, . . . , yk of
S−1(O):{

y⊤j Piyj = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),
y⊤j Piyℓ = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).
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On the other hand, if the number v of the vinegar vari-
ables is smaller than the number m of equations, then
the complexity of the reconciliation attack is estimated
as that of solving a quadratic system of m equations in
v variables.

Intersection Attack In [4], Beullens proposed a new
key recovery attack against UOV, called an intersection
attack. In the case of v < 2o, for an integer k ≥ 2 sat-
isfying k < v

v−o , let L1, . . . , Lk be k invertible matrices
randomly chosen from a set of linear combinations of
the representation matrices P1, . . . , Pm for the public
key. This attack then solves the following equations
for y ∈ Fn

q :{
(L−1

j y)⊤Pi(L
−1
j y) = 0 (1 ≤ i ≤ m, 1 ≤ j ≤ k),

(L−1
j y)⊤Pi(L

−1
ℓ y) = 0 (1 ≤ i ≤ m, 1 ≤ j < ℓ ≤ k).

(3)
Note that a solution z for this system is not a vector in
S−1(O), but L−1

j z is an element of S−1(O), unlike the
Kipnis-Shamir and reconciliation attacks. The solution
space obtained from the above equation has ko− (k −
1)v dimensions. Thus, its complexity is equivalent to
that of solving the quadratic system with n − (ko −
(k − 1)v) = kv − (k − 1)o variables and

(
k+1
2

)
m− 2

(
k
2

)
equations owing to its linear dependency. The value of
k is generally chosen such that the complexity of solving
the above system takes the minimum value under the
condition of k < v

v−o . On the other hand, in the case of
v ≥ 2o, the intersection attack becomes a probabilistic
attack, which solves the system of equation (3) as k = 2
with n variables and (3m − 2) equations and one of
the solutions is a target vector with a probability of
approximately q−v+2o−1. Therefore, its complexity is
estimated by qv−2o+1 times the complexity of solving
the quadratic system with n variables and (3m − 2)
equations.

3 QR-UOV

This section first recalls the description of the quo-
tient ring UOV (QR-UOV) [11]. Then, we summa-
rize the NIST PQC additional call for digital signa-
tures [19], to which the QR-UOV scheme is submitted.

3.1 Basic Scheme

This subsection recalls the construction of QR-UOV
mainly following the notation and description for the
plain UOV in Section 2. Let ℓ be a positive integer
and take v and m as multiples of ℓ. We then define
N := n/ℓ, V := v/ℓ, and M := m/ℓ.
Before explaining the key generation, we prepare some

notations for QR-UOV. Let f be a polynomial in Fq[x]
with deg f = ℓ. For any element g of the quotient ring
Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g

over Fq such that(
1 x · · · xℓ−1

)
Φf

g =
(
g xg · · · xℓ−1g

)
.

For any g ∈ Fq[x]/(f), the matrix Φf
g can be repre-

sented by only ℓ elements in Fq. We let the algebra of

the matrices Af :=
{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}
, and

this Af is a subalgebra in the matrix algebra Fℓ×ℓ
q . For

such matrices corresponding to elements of a quotient
ring, Theorem 1 in [11] shows that there exists an in-
vertible matrix W ∈ Fℓ×ℓ

q such that for any X ∈ Af ,
WX is symmetric. Specifically, if f has a form of
xℓ − axi − 1 with a ̸= 0 and 1 ≤ i < ℓ, then the
above symmetrization is realized by

W =
(
Ji

Jℓ−i

)
, (4)

where Ji :=

(
1

.
.
.

1

)
∈ Fi×i

q . For the subalgebra

Af , we define a subspace Aa,b
f with a, b ∈ N in Faℓ×bℓ

q

containing matrices of the following form X11 . . . X1b

...
. . .

...
Xa1 . . . Xab

 ,

where every Xij ∈ Fℓ×ℓ
q is an element of Af . Further-

more, W (a) denotes an aℓ × aℓ block diagonal matrix
concatenating W ∈ Fℓ×ℓ

q diagonally a times.
From these notations, we can construct a quotient-

ring UOV (QR-UOV) representing public and secret

keys by elements of AN,N
f and W (N)AN,N

f := {A ·
B |A ∈ W (N), B ∈ AN,N

f }. Note that we here rep-
resent the public and secret keys by matrices as de-
scribed in Subsection 2.1. Before generating the public
and secret keys, we prepare an irreducible polynomial
f = xℓ − axi − 1 ∈ Fq[x] with a ̸= 0 and 1 ≤ i < ℓ
and W ∈ Fℓ×ℓ

q like equation (4). We here take f as
an irreducible polynomial for the security of the result-
ing scheme. Then, the key generation of QR-UOV is
described as follows:

1. Choose Fi (i = 1, . . . ,m) from W (N)AN,N
f as a

symmetric matrix with the lower-right m × m
zero-block like equation 2.

2. Choose an invertible matrix S from AN,N
f ran-

domly.

3. Compute the public key Pi = S⊤FiS (i = 1, . . . ,m).

Then, Pi (i = 1, . . . ,m) representing the public key

map are elements of W (N)A
(N)
f from Proposition 1 in

[11]. The signing and verification processes are per-
formed in the same way as the plain UOV.

3.2 NIST PQC Additional Call

This subsection roughly summarizes the NIST PQC
additional call for digital signatures [19], to which the
QR-UOV scheme is submitted.
NIST has initiated a PQC standardization project [16]

since 2016, and in 2022 they selected some algorithms
to be standardized [18]. Indeed, CRYSTALS-Kyber [2]
is chosen as a standardized public key encryption scheme.
Further, CRYSTALS-Dilithium [3], FALCON [8], and
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SPHINCS+ [1] are chosen as standardized digital sig-
nature schemes. Except for SPHINCS+, all these schemes
are based on the computational hardness of problems
involving structured lattices, whereas SPHINCS+ is a
hash-based scheme. Currently, NIST has called for ad-
ditional digital signature proposals [19] to be consid-
ered in the PQC standardization process, and NIST
announced that 40 submissions were accepted in July
2023.
In this call, NIST is specifically interested in schemes

with short signatures and fast verification. Thus, UOV
and its variants have been attracting much interest due
to their short signatures and fast implementations. In-
deed, 10 schemes out of the 40 accepted submissions
are multivariate signatures, and 7 schemes, UOV, QR-
UOV, MAYO, PROV, SNOVA, TUOV, and VOX, out
of the 10 multivariate candidates are UOV variants.
Among these UOV variants, QR-UOV is considered to
be a promising candidate due to its small public key
and simple construction. It has been pointed out in
pqc-forum [21] that there are some issues with the secu-
rity of all three multivariate schemes other than UOV
variants. Furthermore, in pqc-forum [21], Furue and
Ikematsu pointed out that the proposed parameters of
VOX [20], which is a variant of UOV with (+) and QR
techniques, is broken by the rectangular MinRank at-
tack [4] originally proposed on Rainbow. (See [15] for
more details.) Note that the proposed parameters of
QR-UOV were selected by considering the effect of this
rectangular MinRank attack.

4 Key Recovery Attacks over Extension
Field

In this section, we first recall two methods for trans-
forming the public key map of QR-UOV into the ex-
tension field. Subsection 4.3 then shows that these two
methods are essentially the same, and Subsection 4.4
theoretically compares the complexity of the key recov-
ery attacks over the base field and the extension field.
Note that we here suppose that the polynomial f used
in QR-UOV is taken as an irreducible polynomial as
mentioned in Subsection 3.1.

4.1 Pull-back Method

We here construct a one-to-one map representing
the keys of QR-UOV as those of the plain UOV over
Fq[x]/(f) ∼= Fqℓ . Note that, after applying this trans-
formation, the pullback method performs the key re-
covery attacks on the UOV over the extension field.
For each representation matrix Pk ∈ W (N)AN,N

f of
the public key of QR-UOV, we can take ℓ matrices

P̄
(0)
k , . . . , P̄

(ℓ−1)
k ∈ FN×N

q satisfying

Pk =

ℓ−1∑
i=0

(
P̄

(i)
k ⊗WΦf

xi

)
, (5)

due to the structure of the QR-UOV public key. We

then can define an N×N matrix P̄k over Fqℓ as follows:

P̄k =

ℓ−1∑
i=0

xiP̄
(i)
k .

By using the same way, we can construct F̄1, . . . , F̄m

and S̄ corresponding to the secret key F1, . . . , Fm and
S as follows:

Fk =

ℓ−1∑
i=0

(
F̄

(i)
k ⊗WΦf

xi

)
⇒ F̄k =

ℓ−1∑
i=0

xiF̄
(i)
k ,

S =

ℓ−1∑
i=0

(
S̄(i) ⊗ Φf

xi

)
⇒ S̄ =

ℓ−1∑
i=0

xiS̄(i).

Then, it holds P̄k = S̄⊤F̄kS̄ from Pk = S⊤FkS, and F̄k

has the form as in (2). Thus, these set of P̄k, F̄k, and S̄
can be seen as the keys of the plain UOV with N vari-
ables andm equations over the extension field Fqℓ . This
transformation is clearly a bijective map from the key
space

(
{Pk}k∈[m], {Fk}k∈[m], S

)
of QR-UOV into the

key space
(
{P̄k}k∈[m], {F̄k}k∈[m], S̄

)
of the plain UOV

over the extension field Fqℓ .

4.2 Lifting Method

The lifting method is a method of attacking QR-
UOV by diagonalizing the matrices in Af over the ex-
tension field Fqℓ and was proposed in [11]. To explain
it, we prepare some results.

Theorem 1 (Theorem 3 in [11]) Let f ∈ Fq[x] be
an irreducible polynomial with deg f = ℓ and W be
an invertible matrix such that every element of WAf

is a symmetric matrix.

(i) There exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such
that

L−1Φf
xL =


x

xq

xq2

. . .

xqℓ−1

 .

In particular, this L diagonalizes any matrix in
Af .

(ii) The matrix L described in (i) satisfies the condi-
tion that L⊤WL is diagonal. Therefore, we can
write

L⊤WL =


α0

α1

. . .

αℓ−1

 .

The first and second statements in the theorem show
that for any g ∈ Fq[x]/(f) ∼= Fqℓ the matrix L⊤WΦf

gL
is diagonal. This indicates that P1, . . . , Pm of QR-UOV
can be transformed into block diagonal matrices for
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which the block size is N × N . Let L(N) = IN ⊗ L
be an n × n block diagonal matrix with block size ℓ
(n = ℓ · N), for which the N diagonal blocks are L.
Then, (L(N))⊤PiL

(N) (i ∈ [m]) become block matrices
wherein every component is in a diagonal form. Fur-
thermore, there exists a permutation matrix A such
that (L(N)A)⊤Pi(L

(N)A) is a block diagonal matrix
with block size N , and we here denote L̄ := L(N)A.
The transformed matrices L̄⊤PiL̄ can be represented
by (L̄−1SL̄)⊤(L̄⊤FiL̄) (L̄−1SL̄). Then, L̄⊤FiL̄ is the
diagonal concatenation of ℓ smaller matrices, similar
to L̄⊤PiL̄. Furthermore, L̄−1SL̄ is also the diagonal
concatenation of ℓ smaller matrices from (i) in Theo-
rem 1. Then, owing to the structure of Fi, every diag-
onal block of L̄⊤FiL̄ has an M ×M zero block, similar
to Fi. Therefore, each diagonal block of L̄⊤PiL̄ has the
same form as the matrix representing the public key of
UOV with V vinegar variables and M oil variables over
Fqℓ . The lifting method proposed in [11] executes the
key recovery attacks on one of such diagonal blocks.

4.3 Equivalence of These Two Methods

In this subsection, we show that the pull-back method
given in Subsection 4.1 is essentially the same as the
lifting method in Subsection 4.2.
Let A ∈ Fn×n

q be a permutation matrix such that

A⊤ (X ⊗ Y )A = Y ⊗X

for any X ∈ FN×N
q and Y ∈ Fℓ×ℓ

q . Also, from equa-
tion (5), the transformation in the above lifting method
can be described as follows:

A⊤(L(N))⊤PkL
(N)A

=A⊤(L(N))⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗WΦf

xi

)
L(N)A

=A⊤

(
ℓ−1∑
i=0

P̄
(i)
k ⊗ L⊤WΦf

xiL

)
A

=

ℓ−1∑
i=0

L⊤WΦf
xiL⊗ P̄

(i)
k

=

ℓ−1∑
i=0

L⊤WL · L−1Φf
xiL⊗ P̄

(i)
k

=

ℓ−1∑
i=0

diag(α0x
i, α1x

qi, . . . , αℓ−1x
qℓ−1i)⊗ P̄

(i)
k

=diag

(
α0

ℓ−1∑
i=0

P̄
(i)
k xi, . . . , αℓ−1

ℓ−1∑
i=0

P̄
(i)
k xqℓ−1i

)
=diag

(
α0P̄k, α1P̄k,q, . . . , αℓ−1P̄k,qℓ−1

)
,

where diag(A1, . . . , Ak) denotes a block diagonal ma-
trix whose diagonal blocks are given square matrices
A1, . . . , Ak. Further, we have set P̄k,qa := (pq

a

i,j)i,j ,

where P̄k = (pi,j). Then, P̄k,q, . . . , P̄k,qℓ−1 are easily
recovered from P̄k. Thus, when we consider a key re-
covery attack using the lifting method, it is enough to

treat only P̄k (k ∈ [m]). Since the pull-back method
is also to execute a key recovery attack on P̄k, we con-
clude that a key recovery attack using the pull-back
method is the same as that using the lifting method.
The only difference from the pull-back method is that
we can apply the direct attack on the system of L̄⊤PiL̄
(i = 1, . . . ,m) obtained by applying the lifting method.
However, for most cases, this lifting direct attack is not
more efficient than the plain direct attack, since the
large finite field Fqℓ disturbs guessing some variables in
the hybrid approach.

4.4 Comparison of Complexity

For QR-UOV, the key recovery attacks can be per-
formed on the following two problems:

• UOV(q, v,m,m),

• UOV(qℓ, v/ℓ,m/ℓ,m),

where UOV(q, v, o,m) denotes the plain UOV with v
vinegar variables, o oil variables, and m equations over
Fq. The first one is clearly enabled by ignoring the
quotient ring structure of QR-UOV, and the second one
is obtained by applying the transformations described
in Subsection 4.1 and 4.2. This subsection theoretically
compares the complexity of the key recovery attacks on
UOV(q, v,m,m) and UOV(qℓ, v/ℓ,m/ℓ,m).

From the complexity estimation in Subsection 2.2,
the dominant part of the complexity estimation of the
Kipnis-Shamir attack is qv−o, and thus the complex-
ities of the Kipnis-Shamir attack on UOV(q, v,m,m)
and UOV(qℓ, v/ℓ,m/ℓ,m) are asymptotically the same.
Furthermore, in [9], they show that the rectangular
MinRank attack originally proposed on Rainbow is ap-
plicable to QR-UOV. However, the rectangular Min-
Rank attack is only applicable to UOV(qℓ, v/ℓ,m/ℓ,m),
not UOV(q, v,m,m), and thus we do not consider the
rectangular MinRank attack here. From these points,
in the following, we discuss the complexity of the rec-
onciliation and intersection attacks.
Before comparing the complexity of the key recov-

ery attacks, we prepare some assumptions for the fol-
lowing comparison. If we denote by MQ(q, n,m) the
complexity of solving the MQ problem of m equations
in n variables over the finite field Fq, we assume the
following two points:

• If n ≤ m1 ≤ m2, then MQ(q, n,m1) ≥
MQ(q, n,m2).

• If n ≤ m and ℓ |n, m, then MQ(q, n,m) ≥
MQ(qℓ, n/ℓ,m/ℓ).

The first statement holds because the MQ problem
with parameters (q, n,m2) can be reduced to the one
with parameters (q, n,m1) by simply ignoring m2−m1

equations, and it does not affect the solutions with high
probability. Further, we have the second statement be-
cause we can clearly solve the MQ problem with param-
eters (qℓ, n/ℓ,m/ℓ) as the one with parameters (q, n,m)
by decomposing the given system into the base field Fq.
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Reconciliation Attack From the discussion in Sub-
section 2.2, the complexity of the reconciliation attack

on UOV(q, v,m,m) can be given as MQ
(
q, kv,

(
k
2

)
m
)

where this k ≥ 1 is the minimum integer satisfying
kv ≤

(
k
2

)
m. Similarly, the complexity of the reconcil-

iation attack on UOV(qℓ, v/ℓ,m/ℓ,m) is estimated as

MQ
(
qℓ, k′v/ℓ,

(
k′

2

)
m
)

where this k′ ≥ 1 is the mini-

mum integer satisfying k′v/ℓ ≤
(
k′

2

)
m. Then, we clearly

have k ≥ k′ and thus

MQ

(
qℓ, kv/ℓ,

(
k

2

)
m

)
≥ MQ

(
qℓ, k′v/ℓ,

(
k′

2

)
m

)
.

From the second assumption, we have

MQ

(
q, kv,

(
k

2

)
m

)
≥ MQ

(
qℓ, kv/ℓ,

(
k

2

)
m/ℓ

)
.

Then, from the first assumption, we have

MQ

(
qℓ, kv/ℓ,

(
k

2

)
m/ℓ

)
≥ MQ

(
qℓ, kv/ℓ,

(
k

2

)
m

)
.

In conclusion, from the above equations, we have

MQ

(
q, kv,

(
k

2

)
m

)
≥ MQ

(
qℓ, k′v/ℓ,

(
k′

2

)
m

)
.

This indicates that the reconciliation attack is more ef-
ficient on UOV(qℓ, v/ℓ,m/ℓ,m) than on UOV(q, v,m,m).
In practice, if k, k′ ≥ 2, then we can utilize the bilinear
structure of the system to perform the attack efficiently.
Even in the case where we utilize the bilinear struc-
ture, the reconciliation attack on UOV(qℓ, v/ℓ,m/ℓ,m)
is more efficient from the same discussion.

Intersection Attack From the discussion in Sub-
section 2.2, if v < 2m, then the complexity of the
reconciliation attack on UOV(q, v,m,m) can be given

as MQ
(
q, kv − (k − 1)m,

(
k+1
2

)
m− 2

(
k
2

))
where k ≤

v/(v − m). Similarly, the complexity of the recon-
ciliation attack on UOV(qℓ, v/ℓ,m/ℓ,m) can be given

as MQ
(
qℓ, kv/ℓ− (k − 1)m/ℓ,

(
k+1
2

)
m− 2

(
k
2

))
where

k ≤ v/(v − m) in the case of v < 2m. Note that the
conditions for the value k are the same between the
above two settings. Then from a similar discussion as
the case of the reconciliation attack, we have

MQ

(
q, kv − (k − 1)m,

(
k + 1

2

)
m− 2

(
k

2

))
≥ MQ

(
qℓ, kv/ℓ− (k − 1)m/ℓ,

(
k + 1

2

)
m− 2

(
k

2

))
,

and thus the intersection attack is more efficient on
UOV(qℓ, v/ℓ,m/ℓ,m) than on UOV(q, v,m,m). For
the case of v ≥ 2m, we have the same conclusion from
the same discussion.

5 Conclusion

In this paper, we analyze the security of the quo-
tient ring UOV (QR-UOV) proposed at ASIACRYPT
2021. QR-UOV is a variant of UOV reducing the pub-
lic key size compared with the plain UOV and has re-
cently been submitted to the NIST additional call for
digital signature schemes. For the QR-UOV scheme,
there have been proposed two methods of recovering
the secret key by using the quotient ring structure, the
pull-back and lifting methods. In this study, we first
prove that these two methods are essentially the same.
More specifically, we show that smaller matrices over
extension fields obtained by applying these two meth-
ods on block matrices with the QR-structure are the
essentially same. Furthermore, we show that the key
recovery attacks with these two methods over the ex-
tension field Fqℓ are more efficient than the plain key
recovery attacks over the base field Fq.
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