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Abstract—As an efficient multiplication method for polynomial
rings, Number Theoretic Transform (NTT) is a fundamental
algorithm that is both practically useful and theoretically es-
tablished. Chung et al. proposed a method to perform NTT-
based polynomial multiplication for NTT-unfriendly rings that
do not have suitable primitive roots. They applied their proposal
to lattice-based cryptography using NTT-unfriendly rings and
speeded up several schemes. At ARITH 2021, Plantard proposed
a modular multiplication algorithm that improves the speed of
NTT if moduli are not large (a few dozen of bits), which is
the case for typical lattice-based cryptography. It is natural to
expect that Plantard’s method improves Chung et al.’s NTT
when applied to them, however, this is not possible as Chung
et al. requires the use of signed integers while Plantard’s method
assumes unsigned integers. A simple fix would cause a slowdown
and a non-constant-time operation. To overcome this problem,
we propose an efficient method for calculating the modular
multiplication for signed integers based on Plantard’s method.
Our proposal generally incurs no overhead from the original and
works in a constant-time fashion. To show the effectiveness of
our proposal, we provide experimental implementation results on
a lattice-based cryptographic scheme Saber. Currently, NIST is
selecting candidates for standardization of post-quantum cryp-
tography in preparation for the compromise of current public
key cryptography by quantum computers, and has completed
the selection of the final candidates. Saber is one of the finalists
for the NIST standardization project.

Index Terms—Modular Multiplication, Polynomial Multiplica-
tion, Number Theoretic Transform, Post-Quantum Cryptogra-
phy, Saber.

I. INTRODUCTION

Various efficient multiplication techniques for large integers

or polynomials are known, including Karatsuba [1], Toom-

Cook [2], [3] and Number Theoretic Transform [4]. Number

Theoretic Transform (NTT) is a practically useful and theo-

retically established fundamental algorithm as a polynomial

multiplication method. Chung et al. [5] proposed an effective

way of performing NTT-based polynomial multiplication for

NTT-unfriendly rings that do not have suitable primitive

roots of unity. They applied their proposal to several lattice-

based cryptographic schemes using NTT-unfriendly rings and

significantly improved their speed in ARM Microcontrollers

and Intel platforms.

The efficiency of the modular arithmetic is also important

for speeding up lattice-based cryptography. This is also true

for RSA [6] and Elliptic Curve Cryptography (ECC) [7],

which have been actively studied for a long time. Popular

techniques, such as Montgomery reduction [8] and Barrett

reduction [9], perform modular arithmetic and are particularly

suitable for large moduli, say hundreds or larger. Since lattice-

based cryptography typically uses smaller moduli, such as a

few dozen bits, these techniques are not necessarily the fastest

way to calculate the modular arithmetic.

At ARITH 2021, Plantard [10] proposed a novel algorithm

to compute modular multiplications for one word size moduli,

i.e. 32 or 64bits1. Plantard’s algorithm increases the speed

of NTTs with word-size moduli by reducing the number of

multiplications. It is natural to expect that Chung et al.’s

NTT [5] could improve the overall performance by using [10]

as the internal modular arithmetic routine. Unfortunately, this

is not possible as [5] requires the use of signed integers

while [10] assumes unsigned integers. A simple fix, such as

converting a signed integer to an unsigned integer and then

using Plantard’s technique, would cause a slowdown and a

non-constant-time operation. Constant-time implementations

are one of the major countermeasures against timing attacks,

which extract secret information by measuring the differences

in execution time that depend on secret elements. Since the

timing attack on RSA [11] was proposed, research has been

active and various timing attacks on modular arithmetic and

lattice-based schemes have been proposed [12]–[18].

To overcome this problem, we propose a modular mul-

tiplication algorithm for signed integers based on [10]. We

provide experimental results on a lattice-based cryptography

Saber [19]. In 2016, the U.S. National Institute of Standards

1Reference [10] was first published at ARITH 2021 and later its journal
version was published at IEEE TDSC.
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and Technology (NIST) announced the standardization project

for post-quantum cryptography in preparation for the com-

promise of current public key cryptography. NIST called for

candidates and 82 schemes were submitted in 2017. Then,

15 schemes (7 finalists and 8 alternates) were selected in

the 3rd round started in July 2020, and Saber was one of

the finalists. Saber’s security is based on the hardness of

the Module Learning With Rounding (MLWR) problem [20].

NIST rated Saber as a highly efficient scheme and suitable for

general-purpose applications [21].
As mentioned earlier, we propose an efficient algorithm to

quickly compute modular multiplication for signed integers

based on [10], which is originally defined over unsigned

integers. The number of multiplications in our proposal is

the same as [10], and the total number of instructions is

almost the same. The instructions used in our method are

only basic operations, as Plantard’s one. Since our algorithm

does not have a branching based on a secret value, we expect

that constant-time implementation is possible (if constant-time

implementation of [10] is possible). We provide experimen-

tal implementation results on a lattice-based cryptographic

scheme Saber [19]. The experimental results show that NTT-

based polynomial multiplication using our technique is faster

than that using Montgomery multiplication.
Organization of the paper: In Section II, we introduce

notations on Montgomery reduction, NTT and Chung et

al.’s method. In Section III, we describe Plantard’s modular

multiplication algorithm. In Section IV, we present our new

modular multiplication for signed integers. In Section V, we

show experimental results compared to Montgomery multipli-

cation. Section VI will conclude this work.

II. PRELIMINARIES

A. Rounding
We define two operations to round real numbers to integers.

Definition 1 (Rounding). For a real number x, we denote by

�x� the integer n satisfying n ≤ x < n + 1. We also denote

by �x� the integer n satisfying n− 1
2 ≤ x < n+ 1

2 .

For any real number x and any integer N , �x + N� =
�x�+N , �x+N� = �x�+N and

⌊
x+ 1

2

⌋
= �x� hold.

For an integer N > 0, we denote the unsigned interval

UN := {0, 1, . . . , N − 1} and the signed interval SN :=
{− ⌊N2 ⌋ ,− ⌊N2 ⌋+1, . . . ,

⌊
N−1
2

⌋−1,
⌊
N−1
2

⌋}. For z ∈ Z, we

denote z mod N ∈ UN and z mod± N ∈ SN the unique

representatives in UN and SN respectively. The following

equations hold;

z mod N = z −N
⌊ z

N

⌋
, z mod± N = z −N

⌊ z

N

⌉
(1)

Each of them follows from 0 ≤ z mod N
N < 1, − 1

2 ≤
z mod± N

N < 1
2 respectively.

B. Montgomery Multiplication
The calculation of modular multiplication AB mod N can

be done by using (1), but it is very costly to perform divi-

sion by general integers on a computer. On the other hand,

division by powers of two can be implemented using the shift

operation, which is less expensive. Therefore, Montgomery

multiplication [8] is often used, which can compute modular

multiplications using division by a power of two. The calcu-

lation procedure of Montgomery multiplication is shown in

Algorithm 1.

We briefly check that the algorithm is correct. First, the

following equation holds;

(AB + P · (ABR mod 2n)) mod 2n

=(AB + P · (AB(−P−1) mod 2n)) mod 2n

=(AB −AB) mod 2n

=0.

Therefore, there is an integer k exists such that

AB + P · (ABR mod 2n) = k2n

holds. Then we get AB2−n mod P = k mod P . The range

of value of k is

0 ≤ k =
AB + P · (ABR mod 2n)

2n
<

P 2 + P2n

2n
< 2P.

Finally, the correction step (line 3-5 of Algorithm 1) yields an

output that satisfies 0 ≤ C < P and C = AB2−n mod P .

If P < 2n−2, then the correction step can be omitted.

Precisely, 0 ≤ C < 2n−1 holds for 0 ≤ A,B < 2n−1 without

correction. This is because

0 ≤ k =
AB + P · (ABR mod 2n)

2n

<
(2n−1)2 + P2n

2n

< 2n−2 + 2n−2 = 2n−1.

This redundancy is often used in Montgomery multiplication.

Algorithm 1 Montgomery Multiplication [8]

Input: A,B, P,R, n with odd modulus P < 2n, 0 ≤ A,B <
P and R := (−P−1) mod 2n

Output: C = AB2−n mod P with 0 ≤ C < P
1: t← AB
2: C ← (t+ P · (tR mod 2n))/2n

3: if C ≥ P then
4: return C = C − P
5: end if
6: return C

Here we consider the case where signed integers −P−1
2 ≤

A,B < P−1
2 are input to Algorithm 1. In this case, there still

exists an integer k such that AB+P ·(ABR mod 2n) = k2n.

However, the range of value of k is different;

−P

4
< −|AB|

2n
≤ k ≤ |AB|+ P2n

2n
<

P

4
+ P.
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Algorithm 2 Signed Montgomery Multiplication [8]

Input: A,B, P,R, n with odd modulus P < 2n−1, |A|, |B| ≤
2n−1 and R := (−P−1) mod± 2n

Output: C = AB2−n mod± P with |C| ≤ 2n−1

1: t← AB
2: return C = (t+ P · (tR mod± 2n))/2n

Therefore, in order for output C to fulfill |C| ≤ P−1
2 , we need

to modify the correction step;

if C ≥ P/2 then return C ← C − P.

As unsigned version, if P < 2n−2, then |C| ≤ |AB|+P2n

2n <
2n−1 for |A|, |B| < 2n−1 without correction.

However, by changing mod to mod± we can use a larger

P , namely, P < 2n−1. Montgomery multiplication with signed

integers as input and output is shown in Algorithm 2. We can

check the correctness of Algorithm 2 with almost the same

logic as Algorithm 1. For R = (−P−1) mod± P ,

(AB + P · (ABR mod± 2n)) mod± 2n

=(AB −AB) mod± 2n

=0.

Therefore, an integer k such that AB+P ·(ABR mod± 2n) =
k2n exists and AB2−n mod± P = k mod± P holds. In this

case, if P < 2n−1, the range of value of k is

|k| = |AB + P · (AB(−P−1) mod± 2n)|
2n

≤ |AB|+ P2n−1

2n

<
22n−2 + 2n−12n−1

2n
= 2n−1.

Therefore, |C| ≤ 2n−1 holds for |A|, |B| ≤ 2n−1 without

correction step.

C. NTT-based Multiplication

Number Theoretic Transform (NTT) is well known as a

useful algorithm for efficiently computing polynomial multi-

plication.

Let be n ≥ 1 an integer and p be prime. Suppose that the

quotient ring R := Z/pZ has a n-th root of unity ω and an

invertible element ζ ∈ R . We define NTTn:ζ:ω as follows

NTTn:ζ:ω :

⎧⎪⎨
⎪⎩
R[X]/(Xn − ζn)→

n−1∏
i=0

R[X]/(X − ζωi)

f(X) 
→ (f(ζ), f(ζω), . . . , f(ζωn−1))

and its inverse as follows

NTT−1
n:ζ:ω :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−1∏
i=0

R[X]/(X − ζωi)→ R[X]/(Xn − ζn)

(f̂0, f̂1, . . . , f̂n−1) 
→ 1

n

n−1∑
i=0

n−1∑
j=0

(ζ−1ω−i)j f̂i

.

The multiplication of polynomials f, g ∈ R[X]/(Xn − ζn)
can be computed as follows (where ◦ is the element-wise

multiplication)

f(x)g(x) = NTT−1
n:ζ:ω(NTTn:ζ:ω(f) ◦ NTTn:ζ:ω(g)).

Let n be a power of two. By using Cooley-Tukey but-

terfly [22] CT : ((f0, f1), ω) 
→ (f0 + ωf1, f0 − ωf1)
and Gentleman-Sande butterfly [23] GS : ((f0, f1), ω) 
→
(f0 + f1, (f0 − f1)ω) recursively, NTT and inverse NTT

can be computed efficiently. CT and GS are inverse trans-

formations of each other except for the doubling factor;

GS(CT(f0, f1, ω), ω
−1) = 2(f0, f1).

NTT’s calculation method using CT is shown in Algo-

rithm 3, where rev(i) is n-bit reverse of i.

Algorithm 3 Number Theoretic Transform

Input: N = 2n, f ∈ (Z/pZ)[X]/(XN − ζN ) and N -th

primitive root of unity ω
Output: f̂ = {f(ζωrev(i))}0≤i<N

1: For each i, f̂i ← ζifi
2: c← 1
3: for i = 0 to n− 1 do
4: for j = 0 to 2i − 1 do
5: for k = 0 to 2n−1−i − 1 do
6: s← j2n−i + k
7: t← j2n−i + k + 2n−1−i

8: tmp← f̂tω
rev(c) mod p

9: f̂t = (f̂s − tmp) mod p
10: f̂s = (f̂s + tmp) mod p
11: c← c+ 1
12: end for
13: end for
14: end for

D. NTT Multiplication for NTT-unfriendly Rings

Chung et al. [5] proposed a method to perform NTT-based

multiplication for NTT-unfriendly rings. The lattice-based

cryptographic scheme Saber [19] uses an NTT-unfriendly

polynomial ring

R = (Z/qZ) [X]/(Xn + 1), q = 213, n = 256.

The reference implementation of Saber performs polynomial

multiplication by Toom-Cook and Karatsuba methods. Ac-

cording to [5], performing Saber’s polynomial multiplications

by NTT-based multiplication improved the computation speed

by about 20% on Cortex-M4.
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Algorithm 4 NTT-based multiplication for Saber [5]

Input: f[256], g[256] for f, g ∈ R := (Z/qZ) [X]/(Xn + 1),
q = 213, n = 256 and prime p = 25231359

Output: h[256] for h = fg ∈ R
1: Compute NTT256(f) and NTT256(g) over Z/pZ
2: For each i, compute h[i] = f[i] · g[i] mod± p
3: Compute NTT−1

256(h)
4: For each i, h[i]← h[i] & (q − 1)

The following is a brief description of the method used

by [5]. For integer polynomials f, g with coefficients in

[−q/2, q/2), the magnitude of each coefficient of the convolu-

tion fg mod (Xn + 1) is at most nq2/4. Then, if we choose

a prime p such that p > nq2/2 and 2n | (p− 1) are satisfied,

then

fg mod± (p,Xn + 1) = fg mod (Xn + 1) (2)

holds, where fg mod± (p,Xn + 1) denotes the convolution

fg mod (Xn + 1) with all coefficients in [−p/2, p/2). We

can compute the left-hand side of (2) by NTT and recover

the correct result fg mod (q,Xn + 1). The methods described

above are shown in Algorithm 4.

III. PLANTARD METHOD

Plantard [10] proposed an improved version of Montgomery

multiplication that efficiently computes n-bit modular multi-

plications when operating on a 2n-bit word (Algorithm 5).

This algorithm uses the fact that multiplication on a 2n-bit

word is equivalent to a modular multiplication modulo 22n.

The major advantage of this algorithm is that the number

of multiplications is less than Montgomery multiplication if

BR mod 22n can be precomputed, where NTT fits in this case.

According to [10], NTT was about 10% faster by changing

modular multiplications from Montgomery multiplication to

Plantard’s method.

Algorithm 5 Plantard Multiplication [10]

Input: A,B, P,R, n with 0 ≤ A,B ≤ P and R = P−1 mod
22n

Output: C with 0 ≤ C < P and C = AB(−2−2n) mod P
1: C ← ⌊(⌊

ABR mod 22n/2n
⌋
+ 1
)
P/2n

⌋
2: if C = P then
3: return C − P
4: end if
5: return C

The following theorem holds with respect to the size of P .

Theorem 2 ( [10, Theorem 1]). Let P be an odd modulo with

P < 2n/φ and φ = 1+
√
5

2 , then Algorithm 5 is correct.

We check the key points of the proof of this theorem. We

denote Q := ABP−1 mod 22n and obtain

AB(−2−2n) mod P =
QP −AB

22n
, (3)

as did Montgomery multiplication. We further transform the

right-hand of (3) and bring together all the ABs. Let Q1 :=
�Q/2n� and Q0 := Q − Q12

n = Q mod 2n. If P < 2n/φ,

then

0 <
P2n −Q0P +AB

22n
< 1. (4)

Consequently, we obtain

QP −AB

22n
=

⌊
QP −AB

22n
+

P2n −Q0P +AB

22n

⌋
(5)

=

⌊
(Q−Q0 + 2n)P

22n

⌋
(6)

=

⌊
(Q12

n + 2n)P

22n

⌋

=

⌊
(Q1 + 1)P

2n

⌋

=

⎢⎢⎢⎣
(⌊

ABP−1 mod 22n

2n

⌋
+ 1
)
P

2n

⎥⎥⎥⎦ .

This transformation of equation from the sum of products in

Montgomery multiplication to the form of a product by an

integer approximation function is the core idea of Plantard

multiplication.

When we use Algorithm 5 to compute the modular multipli-

cation in NTT (8th line of Algorithm 3), we can precompute

ωrev(c)p−1 mod 22n. Therefore, to compute modular mul-

tiplication f̂tω
rev(c) mod p, Plantard multiplication requires

two single-word size multiplications (MUL), one single-word

size addition (ADD) and two shift operations (SHIFT). On

the other hand, Montgomery multiplication without correction

requires three MUL, one ADD, one SHIFT and one logical

AND operation. Plantard method reduces the number of MUL

operations by one. Plantard multiplication needs one more

SHIFT operation than Montgomery multiplication, however,

this does not affect efficiency as n-bit shifts on a 2n-bit word

are generally cheap.

IV. PROPOSED METHOD

Plantard’s Algorithm 5 computes the modular Multiplica-

tions in NTTs more efficiently than Montgomery Multiplica-

tion. However, to use Algorithm 5 with Chung et al.’s method

described in Section II-D, it is necessary to change the inputs

and outputs from unsigned integers to signed integers. Un-

like Montgomery multiplication (Algorithm 1 and 2), simply

changing mod to mod± does not work well when the inputs

are signed integers. This is because (4) does not necessarily

hold if the inputs A,B are signed integers.

Another naı̈ve way is the following approach. First, we

convert input signed integers to unsigned integers. Then we
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process the first line of Algorithm 5. Finally, we convert

from unsigned integers to signed integers just before output.

It basically works, however the conversions require additional

instructions. The conversions include operations to determine

whether the given integer is positive or negative, which causes

a branching by an if statement. This branching makes constant-

time implementation difficult.

In this study, we propose Algorithm 6, dubbed Signed

Plantard Multiplication, in which the inputs and outputs of Al-

gorithm 5 are changed from unsigned integers to signed inte-

gers. This algorithm handles signed integers without branching

while maintaining efficiency. Since there is no branching by if
statements, a constant-time implementation of this algorithm is

possible. The number of required multiplications is the same

as in Algorithm 5, and the number of additions, shifts, and

logical AND operations is almost the same.

Algorithm 6 Signed Plantard Multiplication

Input: A,B, P,R, n with |A|, |B| ≤ 2n−1 and R =
P−1 mod± 22n

Output: C = AB(−2−2n) mod± P
1: C ← ⌊(⌊

(ABR mod± 22n)/2n
⌉)

P/2n
⌉

2: return C

To make Plantard multiplication work well when the inputs

are signed integers, we need to modify (4). The (−Q0P+AB)
part of (4) plays an important role in the transformation (6).

If we define Q0 as Q mod± 22n, (−Q0P + AB) is zero-

centered. To take advantage of this property, we assume − 1
2 ≤−Q0P+AB

22n < 1
2 and use the round function �·�, not the floor

function �·� at (5) (see the proof of Theorem 3 for details).

Theorem 3. Let P be an odd modulo with P < 2n−1. Then

Algorithm 6 is correct.

Proof of Theorem 3: We check the output of Algorithm 6

C = AB(−2−2n) mod± P , i.e.,⎢⎢⎢⎣
⌊
ABP−1 mod± 22n

2n

⌉
· P

2n

⎤
⎥⎥⎥ = AB(−2−2n) mod± P.

As P is odd, there exists a Q := ABP−1 mod± 22n.

Therefore, we have

(QP −AB) mod± 22n = (ABP−1P −AB) mod± 22n

= 0.

We observe that there exists an integer k satisfying

QP −AB = k22n (7)

and therefore

(7) ⇒ (−AB) mod± P = k22n mod± P

⇒ AB(−2−2n) mod± P = k mod± P.

Now, we analyze the size of k, knowing |A|, |B| ≤ 2n−1, then

we get

|k| =
∣∣∣∣QP −AB

22n

∣∣∣∣
≤ |QP |+ |AB|

22n

≤ 22n−1 · P + 22n−2

22n

=
P

2
+

1

4
.

Furthermore, since k is an integer and P is an odd integer,

we have −P−1
2 ≤ k ≤ P−1

2 . Consequently, we obtain

k mod± P = k and

AB(−2−2n) mod± P = k =
QP −AB

22n
.

Let Q0 := Q mod± 2n and Q1 := �Q/2n� = (Q−Q0)/2
n,

and we assume

−1

2
≤ AB −Q0P

22n
<

1

2
. (8)

We show at the end of the proof that (8) holds. From the

assumption (8) and the fact that QP −AB is divisible by 22n,

the following holds;

QP −AB

22n
=

⌊
QP −AB

22n
+

AB −Q0P

22n

⌉

=

⌊
(Q−Q0)P

22n

⌉

=

⌊
Q1P

2n

⌉
.

As Q1 = �(ABP−1 mod± 22n)/2n�, we obtain that

⎢⎢⎢⎣
⌊
ABP−1 mod± 22n

2n

⌉
· P

2n

⎤
⎥⎥⎥ = AB(−2−2n) mod± P.

To finish this proof, we show that assumption (8) holds if

P < 2n−1;

|AB −Q0P | ≤ |AB|+ |Q0P |
< 2n−1 · 2n−1 + 2n−1 · 2n−1

= 22n−1.

By tightening the constraints on inputs A and B, the range

of P can be increased.

Corollary 4. Let P be an odd modulo with P <

2n
(√

3− 1
2n−1 − 1

)
+ 1. Then Algorithm 6 is correct for

inputs A,B with |A|, |B| ≤ P−1
2 .
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Proof of Corollary 4: We check that the assumption (8)

in the proof is satisfied.

|AB −Q0P | ≤ |AB|+ |Q0P |

≤
(
P − 1

2

)2

+ 2n−1P

=

(
P − 1

2
+ 2n−1

)2

− 22n−2 + 2n−1

<

(
2n−1

(√
3− 1

2n−1
− 1

)
+ 2n−1

)2

− 22n−2 + 2n−1

= 22n−2

(
3− 1

2n−1

)
− 22n−2 + 2n−1

= 22n−1

Remark 5. In the proposed Algorithm 6, the output range is

already [−P−1
2 , P−1

2 ], so there is no need to use if statements.

We show that this is also true for Plantard’s algorithm 5.
We check that in the following inequality⎢⎢⎢⎣
(⌊

ABP−1 mod 22n

2n

⌋
+ 1
)
P

2n

⎥⎥⎥⎦ ≤ ((2n − 1) + 1)P

2n
= P,

the quality condition⌊
ABP−1 mod 22n

2n

⌋
= 2n − 1 (9)

does not hold. Assuming that equality (9) holds, we derive a

contradiction.

(9) ⇒ 2n − 1 ≤ ABP−1 mod 22n

2n
< 2n

⇒ ABP−1 mod 22n = 22n − r for ∃r ∈ Z, 0 < r ≤ 2n

⇒ AB mod 22n = (22n − r)P mod 22n

⇒ AB mod 22n = (−rP ) mod 22n

⇒ AB = 22n − rP

(∵ 0 ≤ AB < 22n, 0 < 22n − rP < 22n)

⇒ AB + rP = 22n. (10)

Now we evaluate the size of AB + rP .

|AB + rP | ≤ P 2 + 2nP

= (P + 2n−1)2 − 22n−2

< (2n/φ+ 2n−1)2 − 22n−2

= 22n−2(2/φ+ 1)2 − 22n−2

= 22n−2(4/φ2 + 4/φ)

= 22n
1 + φ

φ2

= 22n (∵ φ2 − φ− 1 = 0)

From the above, equation (10) does not hold, hence the

contradiction is revealed.

Source code 1
SIGNED PLANTARD MULTIPLICATION

int64_t signedPlantardMul(int64_t A, int64_t B) {
return (((A*B + 0x80000000)>>32)*P + 0x80000000)>>32;

}

Source code 2
SIGNED MONTGOMERY MULTIPLICATION

int signedMontgomeryMul(int A, int B) {
int64_t t = (int64_t) A*B;
return (t+(((t & 0xFFFFFFFF)*R) & 0xFFFFFFFF)*P)>>32;

}

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of Signed

Plantard Multiplication (Algorithm 6) with that of signed

Montgomery multiplication (Algorithm 2). We also present

a comparison between the NTT-based multiplication using

signed Plantard multiplication and that using signed Mont-

gomery multiplication.

A. C implementations

We implemented NTT-based multiplication for Saber [19]

by Chung et al.’s method [5], i.e. size-256 NTT and inverse

NTT over a polynomial ring R′ = (Z/pZ) [X]/(X256 + 1),
p = 25231361 = 49280 · 512 + 1 (see Algorithm 4).

In [5], Chung et al. implemented their NTT-based polynomial

multiplication with 25-bit modulus on ARM 32-bit Microcon-

trollers. On a 64-bit processor, however, we can use signed

Plantard multiplication instead of Montgomery multiplication

for modular multiplication with 25-bit modulus.

The C implementations of signed Plantard multiplication

and signed Montgomery multiplication for the NTT-based

multiplication are shown in source code 1 and 2. The in-

puts A,B satisfy −232 ≤ A,B < 232. The parameters

P = 25231361, n = 32 and R = (−P−1) mod± 2n =
25231359 for signed Montgomery multiplication. In signed

Plantard multiplication, the product BR mod± 22n for R =
P−1 mod± 22n is precomputed and again denoted as B.

The rounding �X/2n� is calculated as �(X+2n−1)/2n�. The

instructions used in both source codes and the number of times

they are used are summarized in the TABLE I. Since our

method used one less instruction each for MUL and the total

number of instructions, the proposed method is considered

to be more advantageous for platforms in particular, when

multiplication takes multiple cycles.

B. Benchmarking for K210

We measured performance on the Sipeed Maixduino2 de-

velopment board based on the Kendryte SoC K2103 (64-bit

2https://www.seeedstudio.com/Sipeed-Maixduino-Kit-for-RISC-V-AI-IoT-
p-4047.html

3https://canaan.io/product/kendryteai
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TABLE I
COMPARISON OF NUMBER OF INSTRUCTIONS BETWEEN OUR METHOD

AND MONTGOMERY MULTIPLICATION.

Instruction Our method (Alg. 6) Montgomery (Alg. 2)

MUL (*) 2 3
ADD (+) 2 1

SHIFT (�) 2 1
AND (&) 0 2

Total 6 7

RISC-V RV64GC 400 MHz). Maixduino is a popular RISC-

V-based MCU and was used in the third-party evaluation of

NIST Lightweight cryptography by Renner et al. [24]4. We

compiled our implementations with RISC-V GCC toolchain

for Kendryte 210 toolchain-kendryte2105 by PlatformIO with

-O3 options.

The portable C implementation of Saber is available at

the official web page6. An almost identical implementation is

provided by PQClean project7, an OSS project that provides

portable C implementations of the post-quantum schemes in

the NIST PQC project. These implementations use Karatsuba

and Toom-Cook multiplication for polynomial multiplications.

Toom-Cook algorithm splits each of the two given polynomials

of degree n into d + 1 polynomials of degree n/(d + 1),
evaluates the values at 2d + 1 different points, computes

pointwise multiplication, performs polynomial interpolation,

and finally reconstructs the product of the given polynomials.

When d = 1, this algorithm is called Karatsuba multiplication.

In PQClean’s Toom-Cook, d = 3 and pointwise multiplica-

tions of degree 64 are calculated by Karatsuba multiplication.

In Kendryte K210, we compare PQClean’s Toom-Cook multi-

plication and our C implementations of NTT-based polynomial

multiplication using Montgomery multiplication and signed

Plantard multiplication, respectively.

TABLE II presents the measured CPU cycles for signed

Plantard multiplication (Source code 1) and signed Mont-

gomery multiplication (Source code 2). The values in the

table are the minimum of 10,000 tests. In Kendryte K210,

our method was about 23% faster than signed Montgomery

multiplication. Since no assembly analysis was performed in

this study and the K210 datasheet does not provide information

on instruction cycles, an accurate analysis is difficult. How-

ever, after some experiments on instruction cycles, we presume

the reduced number of MUL could be the main contribution

of this gain. In this C implementation, the round function

was implemented with a floor function, which increased the

number of ADD. In some environments, it is possible that

instructions corresponding to the round function could be used,

and the execution cycles could be even smaller.

TABLE III shows the cycle results for PQClean’s Toom-

Cook multiplication vs. our NTT-based polynomial multipli-

4https://lwc.las3.de/
5https://registry.platformio.org/tools/platformio/toolchain-kendryte210
6https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
7https://github.com/PQClean/PQClean

TABLE II
COMPARISON BETWEEN OUR AND MONTGOMERY’S MODULAR

MULTIPLICATION.

Algorithm CPU cycle

Montgomery (Alg. 2) 38
Our method (Alg. 6) 31

TABLE III
COMPARISON OF PQCLEAN TOOM-COOK MULTIPLICATION AND

NTT-BASED POLYNOMIAL MULTIPLICATION (NTT-MUL) WITH OUR

METHOD AND MONTGOMERY MULTIPLICATION FOR SABER.

Algorithm CPU cycle

PQClean Toom-Cook 184,919
NTT-Mul with Montgomery (Alg. 4 + Alg. 2) 115,050
NTT-Mul with our method (Alg. 4 + Alg. 6) 98,952

cation using Montgomery multiplication and signed Plantard

multiplication, respectively. The values in the table are the

minimum of 10,000 tests. Our method was about 16% faster

when used within NTT-based multiplication. Changing the

algorithm for calculating modular multiplications from signed

Montgomery multiplication to signed Plantard multiplication

improves the efficiency of computing of modular multipli-

cation by a constant, especially in the butterfly operation in

NTT (line 8 of Algorithm 3). As can be seen from TABLE I,

the calculation of f̂tω
rev(c) mod± p with signed Plantard

multiplication saves one MUL instruction. Since we need to

perform the butterfly operations n log2 n times in Algorithm 4,

the impact of this gain on the overall efficiency is significant.

VI. CONCLUSION

In this work, we proposed an efficient method for computing

the modular multiplication of signed integers when operating

on a single word with reference to Plantard’s method [10],

which is originally defined over unsigned integers. The number

of operations of our method is almost the same as that of [10],

and the efficiency is considered to be maintained. In addition,

since there is no branching in the algorithm, constant-time

implementation is possible. This features would be lost if we

apply a conventional conversion of Plantard method so that

it works on signed integers. A promising application of our

proposal is lattice-based cryptography using Number Theoretic

Transform defined over signed integers.

To demonstrate the merit of our proposal, we implemented

our method for NTT-based multiplication in Saber [19] by

Chung et al.’s method [5] and achieved a speedup of about

16% on a RISC-V CPU K210 compared to using signed

Montgomery multiplication.

We expect our method improves the performance of other

lattice-based cryptography schemes that benefit from NTT.

For example, CRYSTALS-Kyber [25], one of NIST PQC

finalists, uses NTT-based polynomial multiplication with 12-

bit modulus. Implementing Kyber on a 32-bit CPU with our

proposal is interesting, especially considering that Kyber is

now selected as one of the winners of NIST PQC. We can
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apply NTT with our algorithm to lattice-based schemes defined

over NTT-unfriendly rings by Chung et al.’s technique as well.

Such examples are NTRU [26], another NIST PQC finalist,

and LAC [27], the award winner of the PQC competition

hosted by Chinese Association for Cryptologic Research (also

a NIST PQC round 2 candidate). Implementation of NTRU

and LAC using our method is an interesting future work.
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