
Copyright ©2023 The Institute of Electronics,
Information and Communication Engineers

SCIS 2023 2023 Symposium on
Cryptography and Information Security

Fukuoka, Japan, Jan. 24 – 27, 2023
The Institute of Electronics,

Information and Communication Engineers

Efficient Software Implementation of Signature Scheme QR-UOV

Fumitaka Hoshino∗ Hiroki Furue† Yasuhiko Ikematsu‡ Tsunekazu Saito§

Yutaro Kiyomura§ Tsuyoshi Takagi†

Abstract: In ASIACRYPT 2021, Furue et al. proposed a new post-quantum signature scheme called
QR-UOV, which is a variant of the multivariate signature schemes. A provable version of QR-UOV is
proposed by the authors in SCIS 2023. In this work, we present an efficient software implementation
of it and evaluate its performance on some x86 environments.

Keywords: PQC, MPKCs, quotient ring UOV (QR-UOV), software implementation

1 Introduction
Multivariate public key cryptosystems (MPKCs) are

regarded as a strong candidate for post-quantum cryp-
tography (PQC) which has been widely studied around
the world. The security of MPKCs is based on the
difficulty of the multivariate quadratic (MQ) problem
i.e. solving a system of multivariate quadratic polyno-
mial equations over a finite field. It is known that the
generalMQ problem is NP-complete [5], therefore the
security of MPKCs is expected to resist against attacks
using quantum computers.

In EUROCRYPT 1999, Kipnis et al. proposed a sig-
nature scheme called the unbalanced oil and vinegar
(UOV) signature, which is based on a special type of
MQ problem [7]. The UOV signature scheme has
withstood various types of attacks for approximately
20 years. Although UOV is a well-established due to
its short signature size and execution time, its public
key has much larger size than those of other PQC can-
didates. Therefore developing a UOV variant with a
small public-key size is an important task. Rainbow [2]
was one of such UOV variants, which was proposed by
Ding and Schmidt. It was selected as a third-round
finalist in the NIST PQC project [8], however Beullens
found a serious flaw in this scheme [1].

In ASIACRYPT 2021, Furue et al. proposed another
variant of the UOV called QR-UOV [4]. A modified
version of it is proposed by the authors in SCIS 2023,
whose unforgeability can be proven under some as-
∗ Faculty of Information Systems, University of Nagasaki, 1-1-1,

Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195,
Japan. (hoshino@sun.ac.jp)

† Department of Mathematical Informatics, The University of
Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
({furue-hiroki261,takagi}@g.ecc.u-tokyo.ac.jp)

‡ Institute of Mathematics for Industry, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. (ike-
matsu@imi.kyushu-u.ac.jp)

§ NTT Social Informatics Laboratories, 3-9-11,
Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan.
(tsunekazu.saito@ntt.com, yutaro.kiyomura.vs@hco.ntt.co.jp)

sumptions [3]. In this work, we investigate this version
of QR-UOV to implement an efficient software on the
x86 environments.

2 Preliminary
2.1 Basic Notions and Notations

The following list is an overview of typical arrow ex-
pressions which we use to describe algorithms.

X ← Y The value of the expression Y is assigned to
the variable X.

X
◦← Y A new value X ◦Y is assigned to the variable

X, for any binary operator ◦ , e.g. X
∪← Y

means X ← X ∪ Y .
X

$← Y X is uniformly selected from Y , assuming
that Y is a set.

X
$← Y () X is randomly selected from the output space

of the probabilistic Turing machine Y ac-
cording to the distribution of Y ’s output when
Y ’s random tape is uniformly selected.

X
$7→ Y A probabilistic Turing machine which takes

X as an input tape and outputs Y .
X → Y All of maps from X to Y , assuming that X

and Y are sets, which is identical with Y X .
X 7→ Y the map which returns Y for X.

In this work, we identify the set of integers {0, 1} with
the set of truth values. Namely 0 is interpreted as false
and 1 as truth. For a probabilistic Turing machine Y
whose input is X and output is in {0, 1}, we say Y
accepts X if Y (X) returns 1, or Y rejects X if Y (X)
returns 0.

2.2 Signature Scheme
A digital signature scheme Σ consists of three prob-

abilistic polynomial-time algorithms (KeyGen, Sign,
Verify), which are defined as follows:

1

Key generation algorithm KeyGen : 1λ
$7→ (pk, sk) ∈

({0, 1}∗)2, returns a pair of public key pk and secret
key sk for given security parameter 1λ.

Signing algorithm Sign : M, pk, sk
$7→ σ ∈ {0, 1}∗,

takes a message M ∈ {0, 1}∗ and the signer’s key
pair (pk, sk), and then generates a digital signature
σ of the signer for the message M.

Verification algorithm Verify : M, pk, σ
$7→ β ∈ {0,

1}, takes a message M ∈ {0, 1}∗, a public key pk and
a signature σ, and accepts or rejects the message M.

Let Advcomplete : N→ [0, 1] be a function as follows.

Advcomplete(λ) := Pr

β = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

M
$← {0, 1}poly(λ),

σ
$← Sign(M, pk, sk),

β
$← Verify(M, pk, σ).

 .

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is complete in λ iff Advcomplete(λ) is overwhelming in λ.
In the following sections, we regard the completeness
as a part of the syntax of signature scheme, thus we
assume implicitly that any signature schemes are com-
plete.

Let invalid be a set of messages and Opk,sk be a
signing oracle defined as follows.

Opk,sk(M) :=

σ
$← Sign(M, pk, sk),

invalid
∪← {M},

return σ.

Let A be a forger against the signature scheme Σ. We
define AdvEUF-CMA

A : N→ [0, 1] as

AdvEUF-CMA
A (λ) := Pr

β = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)
$← KeyGen(1λ),

invalid← ∅,

(M∗, σ∗)
$← AOpk,sk(pk),

β
$← Verify(M∗, pk, σ∗)

∧ (M∗ 6∈ invalid).

.

We say a signature scheme Σ := (KeyGen, Sign, Verify)
is EUF-CMA in λ iff for any probabilistic polynomial-
time algorithm A, AdvEUF-CMA

A (λ) is negligible in λ.
In SCIS 2023, Furue et al. proposed a modified ver-

sion of the QR-UOV signature scheme, which can be
proven to be EUF-CMA in the random oracle model
under some assumptions. In this work, we will investi-
gate this version of the QR-UOV signature scheme.

2.3 Basic Concept of the QR-UOV
Let f ∈ Fq[x] be a polynomial in Fq of degree `.

For each element g ∈ Fq[x]/(f), there exists a matrix
Φf

g ∈ F`×`
q s.t.

(1, x, . . . , x`−1)Φf
g = (g, xg, . . . , x`−1g) ∈ (Fq[x]/(f))

`.

Let Af := {Φf
g ∈ F`×`

q | g ∈ Fq[x]/(f)}. Af is a
subalgebra of F`×`

q because

Φf
g1+g2 = Φf

g1 +Φf
g2 ,

Φf
g1g2 = Φf

g1Φ
f
g2 .

Hence an element in Af , i.e. `×` Fq-matrix can be rep-
resented as an element in Fq[x]/(f), i.e. ` elements of
Fq. One might think that this property of Af could
be available to construct a UOV variant with short
public key. However this technique cannot be applied
directly to the UOV variants with another promising
technique using symmetric matrices, since the elements
of Af are generally unstable under the transpose oper-
ation. Furue et al. solve this problem by introducing
an invertible matrix W ∈ F`×`

q s.t. WΦf
g is transpose

for any Φf
g ∈ Af , thus they propose a UOV variant

using WAf := {WΦf
g ∈ F`×`

q | Φf
g ∈ Af}, that is

QR-UOV [4]. Therefore, throughout this work, we will
identify the element g ∈ Fq[x]/(f) with its matrix form
WΦf

g ∈ WAf . When we need to distinguish them, we
write its matrix form WΦf

g as g̃ for g ∈ Fq[x]/(f), i.e.

g̃ := WΦf
g .

Moreover, for G := (gij)i∈[n1],j∈[n2] ∈ (Fq[x]/(f))
n1×n2 ,

we define

G̃ := (WΦf
gij)i∈[n1],j∈[n2] ∈ (WAf)

n1×n2 ,

where [n] := {1, . . . , n}. Similarly, for m ∈ N, we de-
note the set of integers {1, . . . ,m} as [m] in the follow-
ing sections.

2.4 LU decomposition
In usual MPKC schemes, some basic operations of

linear algebra over a finite field are heavily performed.
Of course a UOV variant also uses many operations
of matrices over Fq. Especially in its Sign algorithm,
one must solve a linear equation system which may be
over/underdetermined. It is known that the study of
Gaussian elimination has been continued for more than
2,200 years [6], thus a fair amount of studies for this
problem likely to be found in the vast amount of liter-
ature. However, just for convenience here we describe
a variant of it.

The following LUdecompose algorithm is a variant of
the LU decomposition (Gaussian elimination) for ma-
trices which is not necessarily invertible. Using this al-
gorithm, a row echelon form can be obtained instead of
an upper triangular matrix. This feature of LUdecompose
is suitable for the modified version of QR-UOV. On in-
put of a matrix A ∈ Fm×m

q , LUdecompose outputs a list
of matrices (P,L, U) ∈

(
Fm×m
q

)3 and some additional
information, where A = P−1LU . Each of (P,L, U) is
a matrix of special form as in the following list.

P : a permutation matrix, of course invertible,
L: an invertible lower triangular matrix,

2

U : a row echelon form where the leading entry in
each nonzero row is 1, which is not necessarily
invertible.

In the following, we write zero and identity matrices
of dimension m as O and I respectively, and row_swap(A,
P, i, j) means the operation to exchange row i and row
j for each of A and P .

LUdecompose(A ∈ Fm×m
q) :=

P ← I, c← −1, rank← 0, index← (),

for i = 1 to m,

c++, if c > m break to label 1,
j ← i,

while Aj,c = 0,

j++,
if j > m,

c++, if c > m break to label 1,
j ← i,

row_swap(A,P, i, j),

rank++,
index← index ‖ (c),

inv← A−1
i,c ,

Ai,i ← Ai,c,

for k = c+ 1 to m, Ai,k
×← inv,

for j = i+ 1 to m,

mul← Aj,c,

Aj,i ← mul,

for k = c+ 1 to m, Aj,k
−← mul ·Ai,k,

1: (L,U)← (I,O),

for i = 1 to rank,

for j = i to m, Lj,i ← Aj,i,

c← indexi,

Ui,c ← 1,

for j = c+ 1 to m, Ui,j ← Ai,j ,

return (P,L, U, rank, index).

Although we define each of (P,L, U) as Fm×m
q , in prac-

tice these matrices have some compact representation
depending on their form. In fact, L and U are not used
until the control reaches label 1, and after label 1, just
a portion of updated A is copied to L and U . More-
over, permutation P can be expressed just as an array
of row index.

The following test algorithm takes (P,L, U, rank,
index), m-dimensional Fq column vector b and some
additional information as its arguments, and then de-
cides whether the equation system A · x = b is consis-
tent or not, where (P,L, U, rank, index) is the return
value of the LUdecompose(A). The inverse matrix of
L can be relatively easy to derive, because L is an in-
vertible lower triangular matrix, and it can be reused
many times once it is obtained.

test((P,L, U, rank, index),b, cacheR, R) :=

if rank = m, consistent← 1,

else,

if cacheR = 0,

R← L−1, cacheR← 1,

b′ ← P · b,
consistent←

∧m
i=rank+1 (Ri · b′ = 0) ,

return (consistent, cacheR, R).

The following sample_a_solution algorithm takes
the return value of LUdecompose(A) and m-dimensional
Fq column vector b as its arguments, and then samples
a solution of the linear equation system Ax = b, if it
is consistent.

sample_a_solution((P,L, U, rank, index),b) :=

b(1) ← P · b,
for i = 1 to rank,

b
(2)
i ←

(
b
(1)
i −

∑i−1
j=1 Li,j · b(2)

j

)
/Li,i,

for i = rank+ 1 to m, b
(2)
i ← 0,

for i = m downto 1,

if ∃j s.t. i = indexj ,

xi ← b
(2)
j −

∑m
k=i+1 Uj,k · xk,

else, xi
$← Fq,

return x.

3 the QR-UOV signature scheme
3.1 Algorithms

In the following, we denote the random oracle of in-
put Y whose output set is X as HashX(Y). The QR-
UOV signature scheme Σ consists of the following three
probabilistic polynomial-time algorithms (KeyGen, Sign,
Verify), which are defined as follows:

KeyGen(1λ) :=

(sk, seedpk)
$← {0, 1}2λ,

S′ ← HashFV ×M

q`
(sk),

(Pi,1, Pi,2)i∈[m] ← HashFV ×(V +M)×m

q`

(seedpk),

2: (Pi,3)i∈[m] ← (−S′>Pi,1S+P>
i,2S

′+S′>Pi,2)i∈[m],

pk← (seedpk, (Pi,3)i∈[m]),

return (pk, sk).

Note that P>
i,2S

′ and S′>Pi,2 in the formula of label 2
are just transpose of each other.

Sign(M, pk, sk) :=

(seedpk, (Pi,3)i∈[m])← pk,

(Pi,1, Pi,2)i∈[m] ← HashFV ×(V +M)×m

q`

(seedpk),

S′ ← HashFV ×M

q`
(sk),

(Fi,1)i∈[m] ← (Pi,1)i∈[m],

3

(Fi,2)i∈[m] ← (−Pi,1S
′ + Pi,2)i∈[m],

Y > := (y1, . . . , yv)
$← Fv

q ,

A← (2Y >F̃i,2)i∈[m] ∈ Fm×m
q ,

LUresult← LUdecompose(A),

c← (Y >F̃i,1Y)i∈[m] ∈ Fm
q ,

R← I,

3: repeat

r
$← {0, 1}λ,

t← HashFm
q
(M‖r) ∈ Fm

q ,

b← t− c ∈ Fm
q ,

cacheR← 0,

(consistent, cacheR, R)
$← test(LUresult,b, cacheR, R),

until consistent,

X> $← sample_a_solution(LUresult,b),

s :=

(
Y − S̃′X

X

)>

∈ Fn
q ,

return σ := (r, s).

It is known that the expected number of loops in the
repeat statement of label 3 is only 2.0 [9]. However
this expected complexity is an amortized value and in
the actual computation, exponential number of loops
are required in the rank shortage. This is why we need
to tune the LU decomposition in this work. Note that
this Sign algorithm is far from the constant-time im-
plementation.

Verify(pk,M, σ) :=

(seedpk, (Pi,3)i∈[m])← pk,

(Pi,1, Pi,2)i∈[m] ← HashFV ×(V +M)×m

q`

(seedpk),

(r, s)← σ,

t← HashFm
q
(M‖r) ∈ Fm

q ,

t′ ←
(
s

(
Pi,1 Pi,2

P>
i,2 Pi,3

)
s>

)
i∈[m]

,

return t = t′.

Because the following Verify consists of relatively sim-
ple operations, it is much faster than KeyGen or Sign.

3.2 Parameter Sets
Here we quote the tables of various parameter sets

for QR-UOV given by Furue et al. in [3]. The definition
of each parameter is given as follows:

q: the order of the finite field,

v: the number of vinegar variables,

m: the number of oil variables and equations,

`: block size.

Table 1: Parameters for QR-UOV satisfying the secu-
rity level I for the NIST PQC standardization project

(v,m, `) (a) (b) (c)
q = 7 (189, 72, 3) (2409, 99, 33) (650, 80, 10)
q = 31 (165, 60, 3) (1664, 78, 26) (600, 70, 10)
q = 127 (156, 54, 3) (1440, 72, 24) (550, 60, 10)

Table 2: Parameters for QR-UOV satisfying the secu-
rity level III for the NIST PQC standardization project
(v,m, `) (a) (b) (c)
q = 7 (291, 111, 3) (4640, 160, 40) (1050, 130, 10)
q = 31 (246, 87, 3) (3783, 117, 39) (890, 100, 10)
q = 127 (228, 78, 3) (3348, 108, 36) (830, 90, 10)

Table 3: Parameters for QR-UOV satisfying the secu-
rity level V for the NIST PQC standardization project
(v,m, `) (a) (b) (c)
q = 7 (411, 162, 3) (7335, 225, 45) (1450, 180, 10)
q = 31 (324, 114, 3) (4699, 148, 37) (1120, 120, 10)
q = 127 (306, 105, 3) (6000, 144, 48) (1120, 120, 10)

4 Implementation
4.1 Parallel computing in x86

Although there are so many environments of parallel
computing in x86 that it is difficult to cover them all,
we list some typical ones.

- Open Multi-Processing (OpenMP) is an applica-
tion programming interface which enables paral-
lel programming on some Multiple Instruction,
Multiple Data (MIMD) environment. It is avail-
able from some programming languages such as
C, C++ and FORTRAN. By using OpenMP in-
terface, it is relatively easy to create a program
with multiple threads which concurrently run on
multiple cores.

- Single Instruction, Multiple Data (SIMD) instruc-
tion sets are powerful tools for implementing high-
performance cryptography, however in x86 envi-
ronments there are many number of such instruc-
tion sets, i.e. MMX (1996), 3DNow! (1998), SSE
(1999), SSE2 (2001), SSE3 (2004), SSE4 (2006),
AVX (2008), AVX2 (2013), and so on. Some of
the recent ones are listed below.

- The Advanced Vector Extensions (AVX) and
AVX2 are expansions of previous SIMD ar-
chitecture. They supports YMM vector reg-
isters of 256 bits.

- AVX512 is an expansions of AVX2, which
supports ZMM vector registers of 512 bits.

- The Advanced Matrix Extensions (AMX) is
a new SIMD-type extension of x86 instruc-
tion set which supports a set of 2-dimensional

4

registers (tiles) representing (sub-)matrices
and some operations on them.

- General-Purpose computing on Graphics Process-
ing Units (GPGPUs) is a kind of parallel process-
ing of general-purpose computation which uses
Graphics Processing Units (GPUs). GPGPUs are
applied to various fields from deep learning to bit-
coin mining. CUDA is the most famous platform
for GPGPUs, however there are many other plat-
forms.

4.2 Environment
In this work, we choose OpenMP as the first step

of parallel computing in x86, because it is significantly
easier to use than other technologies. The experimental
environment is as follows :

- CPU: AMD EPYC 7763 2.45GHz (Turbo Boost
3.15GHz) (64 cores, 128 threads) x 1

- Memory: 32GB RDIMM,3200MT/s,

- OS: Linux 5.13.0-28-generic #31 20.04.1-Ubuntu
SMP x86_64 GNU/Linux

- Compiler: gcc (Ubuntu 9.4.0-1ubuntu1 20.04) 9.4.0

- Compiler Options: -O3 -fomit-frame-pointer -Wno-
unused-result -lcrypto -lm -I. -fopenmp

- Libraries: OpenSSL 1.1.1f 31 Mar 2020

4.3 Experiments
The performance of each algorithm is estimated as

follows where N = 100.

Step.0: The following algorithms are implemented.

(a) : Random Seed/Message Generation etc,
(b) : KeyGen,
(c) : Sign,
(d) : Verify.

Step.1: Timing data of the following tasks are
measured by using time command of bash.

A : ((a)) ∗N times,
B : ((a) + (b)) ∗N times,
C : ((a) + (b) + (c)) ∗N times,
D : ((a) + (b) + (c) + (d)) ∗N times.

Step.2: The performance of each algorithms are
estimated as

time(KeyGen) = (time(B)− time(A))/N,

time(Sign) = (time(C)− time(B))/N,

time(Verify) = (time(D)− time(C))/N.

4.4 Generic Code
We investigate the parameter set to find a promising

one in terms of performance. To achieve this goal, we
prepared a generic code of the QR-UOV which is almost
identical to the pseudo code in the previous section.
By applying OpenMP to this code, we confirmed the
effect of multiple processing. The results of this code
are shown in Fig.1 ∼ Fig.3.

4.5 Parameter Specific Code
We implement a parameter specific code for q = 7,

` = 3. The results of this code are shown in Table.4 ∼
Table.6 and Fig.4 ∼ Fig.6.

Table 4: performance of QR-UOV I (sec)
log2(nthreads) KeyGen Sign Verify

0 0.05135 0.03598 0.00528
1 0.02832 0.02138 0.00516
2 0.01703 0.01402 0.00532
3 0.01121 0.01029 0.00526
4 0.00860 0.00856 0.00521
5 0.00729 0.00789 0.00513
6 0.00671 0.00746 0.00518
7 0.00778 0.00745 0.00585

Table 5: performance of QR-UOV III (sec)
log2(nthreads) KeyGen Sign Verify

0 0.27685 0.19146 0.02412
1 0.15046 0.10933 0.02335
2 0.08711 0.06844 0.02351
3 0.05505 0.04825 0.02265
4 0.03878 0.03800 0.02132
5 0.03197 0.03300 0.02091
6 0.02728 0.03014 0.02053
7 0.02701 0.02951 0.02210

Table 6: performance of QR-UOV V (sec)
log2(nthreads) KeyGen Sign Verify

0 1.18275 0.80329 0.03016
1 0.62056 0.43968 0.04575
2 0.34517 0.26047 0.05506
3 0.20680 0.17075 0.05696
4 0.13706 0.12510 0.05804
5 0.10262 0.10243 0.05926
6 0.08213 0.09065 0.05908
7 0.08029 0.08809 0.06004

References
[1] W. Beullens, “Breaking rainbow takes a week-

end on a laptop,” Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryp-
tology Conference, CRYPTO 2022, Santa Bar-
bara, CA, USA, August 15-18, 2022, Proceed-
ings, Part II, ed. Y. Dodis and T. Shrimpton,

5

Lecture Notes in Computer Science, vol.13508,
pp.464–479, Springer, 2022. doi:10.1007/
978-3-031-15979-4_16.

[2] J. Ding and D. Schmidt, “Rainbow, a new mul-
tivariable polynomial signature scheme,” Applied
Cryptography and Network Security, Third Inter-
national Conference, ACNS 2005, New York, NY,
USA, June 7-10, 2005, Proceedings, ed. J. Ioanni-
dis, A.D. Keromytis, and M. Yung, Lecture Notes
in Computer Science, vol.3531, pp.164–175, 2005.
doi:10.1007/11496137_12.

[3] H. Furue, Y. Ikematsu, F. Hoshino, Y. Kiyomura,
T. Saito, and T. Takagi, “Secure Parameters for
Multivariate Polynomial Signature Scheme QR-
UOV.” In Proc. of SCIS 2023 2023 Symposium on
Cryptography and Information Security Fukuoka,
Japan, Jan. 24 - 27, 2023. IEICE, 2023.

[4] H. Furue, Y. Ikematsu, Y. Kiyomura, and T. Tak-
agi, “A new variant of unbalanced oil and vinegar
using quotient ring: QR-UOV,” Advances in Cryp-
tology - ASIACRYPT 2021 - 27th International
Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, De-
cember 6-10, 2021, Proceedings, Part IV, ed. M. Ti-
bouchi and H. Wang, Lecture Notes in Computer
Science, vol.13093, pp.187–217, Springer, 2021.
doi:10.1007/978-3-030-92068-5_7.

[5] M.R. Garey and D.S. Johnson, Computers and
Intractability; A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., USA, 1990.

[6] S. Kangshen, J.N. Crossley, and A.W.C. Lun, The
Nine Chapters on the Mathematical Art, Oxford
University Press, Oxford, 1999.

[7] A. Kipnis, J. Patarin, and L. Goubin, “Unbalanced
oil and vinegar signature schemes,” Advances in
Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Crypto-
graphic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, ed. J. Stern, Lecture Notes in
Computer Science, vol.1592, pp.206–222, Springer,
1999. doi:10.1007/3-540-48910-X_15.

[8] NIST, “Submission Requirements and Evalua-
tion Criteria for the Post-Quantum Cryptog-
raphy Standardization Process.” Cryptology
ePrint Archive, Paper 2022/434, 2016. URL:
https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

[9] K. Sakumoto, T. Shirai, and H. Hiwatari,
“On provable security of UOV and HFE sig-
nature schemes against chosen-message attack,”
Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011, Taipei, Taiwan,
November 29 - December 2, 2011. Proceedings,

ed. B. Yang, Lecture Notes in Computer Science,
vol.7071, pp.68–82, Springer, 2011. doi:10.1007/
978-3-642-25405-5_5.

6

http://dx.doi.org/10.1007/978-3-031-15979-4_16
http://dx.doi.org/10.1007/978-3-031-15979-4_16
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/978-3-030-92068-5_7
http://dx.doi.org/10.1007/3-540-48910-X_15
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://dx.doi.org/10.1007/978-3-642-25405-5_5
http://dx.doi.org/10.1007/978-3-642-25405-5_5

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

Keygen

I F_7^3 I F_7^33 I F_7^10 III F_7^3 III F_7^40 III F_7^10 V F_7^3 V F_7^45 V F_7^10 I F_31^3 I F_31^26

I F_31^10 III F_31^3 III F_31^39 III F_31^10 V F_31^3 V F_31^37 V F_31^10 I F_127^3 III F_127^3 V F_127^3

Fig 1: Performance of KeyGen (generic code)

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

Sign

I F_7^3 I F_7^33 I F_7^10 III F_7^3 III F_7^40 III F_7^10 V F_7^3 V F_7^45 V F_7^10 I F_31^3 I F_31^26

I F_31^10 III F_31^3 III F_31^39 III F_31^10 V F_31^3 V F_31^37 V F_31^10 I F_127^3 III F_127^3 V F_127^3

Fig 2: Performance of Sign (generic code)

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

Verify

I F_7^3 I F_7^33 I F_7^10 III F_7^3 III F_7^40 III F_7^10 V F_7^3 V F_7^45 V F_7^10 I F_31^3 I F_31^26

I F_31^10 III F_31^3 III F_31^39 III F_31^10 V F_31^3 V F_31^37 V F_31^10 I F_127^3 III F_127^3 V F_127^3

Fig 3: Performance of Verify (generic code)

7

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

performance of QR-UOV II (q=7, l=3)

KeyGen Sign Verify

Fig 4: Performance of QR-UOV I (parameter specific code)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

performance of QR-UOV IV (q=7, l=3)

KeyGen Sign Verify

Fig 5: Performance of QR-UOV III (parameter specific code)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

se
c

log_2(nThreads)

performance of QR-UOV VI (q=7, l=3)

KeyGen Sign Verify

Fig 6: Performance of QR-UOV V (parameter specific code)

8

	Introduction
	Preliminary
	Basic Notions and Notations
	Signature Scheme
	Basic Concept of the QR-UOV
	LU decomposition

	the QR-UOV signature scheme
	Algorithms
	Parameter Sets

	Implementation
	Parallel computing in x86
	Environment
	Experiments
	Generic Code
	Parameter Specific Code

