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Abstract: The multivariate-based unbalanced oil and vinegar signature scheme (UOV) is expected
to be one of the candidates for post-quantum cryptography (PQC). UOV is a well-established signature
scheme owing to its short signature and execution time. However, its public key is much larger than
that of other PQC candidates. At ASIACRYPT 2021, Furue et al. proposed quotient ring UOV
(QR-UOV) as a new variant of UOV, which reduces the public key size compared to the plain UOV.
However, there has not been a formal security proof and detailed parameter analysis for QR-UOV.
In this paper, one of our contributions is that we present the formal definitions of two assumptions
and prove the EUF-CMA security of QR-UOV based on these assumptions. Furthermore, we propose
various parameter sets of QR-UOV with different security levels, the orders of the finite field, and
the purposes, and estimate the public key and signature size of these parameters. By comparing the
public key and signature size of these parameter sets with that of other PQC candidates, we discuss
the (dis)advantages of each parameter set.
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1 Introduction

The public key cryptosystems such as RSA and ECC,
which are being widely used in recent times, can be bro-
ken in polynomial time using Shor’s algorithm [21] on
a quantum computer. Thus, research on post-quantum
cryptography (PQC), which is secure against quan-
tum computing attacks, is accelerating. Indeed, the
U.S. National Institute for Standards and Technology
(NIST) has initiated a standardization project on it
since 2016 [16].
Multivariate public key cryptography (MPKC) is based

on the difficulty of solving a system of multivariate
quadratic polynomial equations over a finite field (the
multivariate quadratic (MQ) problem), and it is re-
garded as a strong candidate for PQC. The MQ prob-
lem is NP-complete [13] and is thus likely to be secure
in the post-quantum era.
The unbalanced oil and vinegar signature scheme

(UOV) [14], a multivariate signature scheme proposed
by Kipnis et al. at EUROCRYPT 1999, has withstood
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various types of attacks for approximately 20 years. In-
deed, a multilayer UOV variant Rainbow [9], which is
significantly weakened by an attack proposed by Beul-
lens at CRYPTO 2022 [7], was selected as a third-round
finalist in the NIST PQC project [18]. UOV is a well-
established signature scheme owing to its short signa-
ture and execution time. By contrast, UOV has public
keys much larger than those of other PQC candidates,
such as lattice-based signature schemes. Thus, it is im-
portant to develop a UOV variant with a small public
key.
At ASIACRYPT 2021, Furue et al. presented a new

UOV variant using an arbitrary quotient ring called
quotient ring UOV (QR-UOV) [12]. In QR-UOV, a
public key is represented by block matrices in which
every ℓ × ℓ component corresponds to an element of a
quotient ring Fq[x]/(f) with f ∈ Fq[x] and degf = ℓ.
From this construction, we can compress ℓ2 compo-
nents in each block to ℓ coefficients in Fq, and thus
QR-UOV can reduce the public key size from the plain
UOV. Note that this QR-UOV can be considered as
a generalization of the block-anti-circulant UOV [22],
which is the case for f = xℓ − 1.
In [12], the authors show the security of QR-UOV

only by evaluating the complexity of considerable at-
tacks on QR-UOV and propose only one parameter set
for each of the security levels I, III, V for the NIST PQC
standardization project [17]. Therefore, constructing a
formal security proof and analyzing various parameter
sets have been the remaining tasks for QR-UOV.
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Our Contributions Our two main contributions to
the QR-UOV signature scheme are the following:

• Formally proving the existential unforgeability un-
der adaptive chosen message attacks (EUF-CMA)
security of a modified version of QR-UOV based
on two assumptions.

• Giving various parameter sets for QR-UOV and
analyzing their public key and signature size.

In the first point, we give the first formal security proof
of QR-UOV. This proof is based on two assumptions:
One is derived from the plain UOV, whereas another
one is a new assumption derived from QR-UOV. Thus,
this security proof is not enough to guarantee the secu-
rity of QR-UOV but is valuable for cryptoanalysis. In
the second point, we propose three types of parameters
with different purposes for each order of the finite field
and security level. For these proposed parameter sets,
we analyze their public key and signature size and com-
pare them with those of other post-quantum signature
schemes.

Organization The rest of this paper is organized
as follows: Section 2 recalls the plain UOV signature
scheme. Section 3 recalls QR-UOV and proposes a new
modification for the security proof. Section 4 gives
some assumptions and a security definition, and then
theoretically proves the security of QR-UOV. Section
5 proposes some parameter sets for QR-UOV and ana-
lyzes their public key and signature size. Finally, Sec-
tion 6 is devoted to the conclusion.

2 Unbalanced Oil and Vinegar (UOV)

This section describes the structure of the unbal-
anced oil and vinegar signature scheme (UOV) [14].
Let q be a prime power and Fq be the field with q el-
ements. Furthermore, let v and m be positive integers
and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar-variables and xv+1, . . . , xn

oil-variables.
We first recall the key generation of UOV as follows:

We design F = (f1, . . . , fm) : Fn
q → Fm

q , called a central
map, such that each fk (k = 1, . . . ,m) is a quadratic
polynomial of the form

fk(x1, . . . , xn) =

v∑
i=1

n∑
j=i

α
(k)
i,j xixj (2.1)

where α
(k)
i,j ∈ Fq. Next, we choose a random linear map

S : Fn
q → Fn

q to hide the structure of F . The public
key P is then provided as a polynomial map,

P = F ◦ S : Fn
q → Fm

q ,

and the secret key comprises F and S. We here omit
linear and constant terms of F for simplicity.
Next, we describe the inversion of the central map F .

When we find x ∈ Fn
q satisfying F(x) = y for a given

y ∈ Fm
q , we first choose random values a1, . . . , av in Fq

as the values of the vinegar-variables. We then can eas-
ily obtain a solution for the equation F(a1, . . . , av, xv+1,
. . . , xn) = y because this is a linear system of m equa-
tions in m oil-variables from the construction of the
central map (2.1). If no solution exists for this equa-
tion, we choose new random values a′1, . . . , a

′
v, and re-

peat the above procedure.
By using this inversion approach, the signature is

generated as follows: Given a message m ∈ Fm
q to be

signed, find a solution m1 to the equation F(x) = m,
and this gives the signature s = S−1(m1) ∈ Fn

q for the
message m. Further, verification is applied by confirm-
ing whether P(s) = m.

Finally, we introduce matrices representing the pub-
lic and secret keys of UOV. For each polynomial pi of
the public key P, there exists an n× n matrix Pi such
that pi(x) = x⊤ · Pi · x. Similarly, an n× n matrix Fi

can be taken for each fi with 1 ≤ i ≤ m, and an n× n
matrix S is defined to satisfy S(x) = S · x. In gen-
eral, these matrices Pi and Fi are taken as symmetric
matrices if q is odd, and are taken as upper triangular
matrices if q is even. For these representation matrices,
based on equation (2.1), Fi has the following form(

∗v×v ∗v×m

∗m×v 0m×m

)
. (2.2)

Furthermore, from P = F ◦ S, we have

Pi = S⊤FiS, (i = 1, . . . ,m).

3 QR-UOV

This section first recalls the basic version of the QR-
UOV and the method reducing its public key size [12].
Then, we explain a way of modifying the signature gen-
eration step to prove its security in Section 4.

3.1 Basic Scheme

This subsection recalls the construction of QR-UOV
mainly following the notation and description for the
plain UOV in Section 2. Let ℓ be a positive integer
and take v and m as multiples of ℓ. We then define
N := n/ℓ, V := v/ℓ, and M := m/ℓ.
Before explaining the key generation, we prepare some

notations for QR-UOV. Let f be a polynomial in Fq[x]
with degf = ℓ. For any element g of the quotient ring
Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g

over Fq such that(
1 x · · · xℓ−1

)
Φf

g =
(
g xg · · · xℓ−1g

)
.

For any g ∈ Fq[x]/(f), the matrix Φf
g can be repre-

sented by only ℓ elements in Fq. We let the algebra of
the matrices Af :=

{
Φf

g ∈ Fℓ×ℓ
q

∣∣ g ∈ Fq[x]/(f)
}
, and

this Af is a subalgebra in the matrix algebra Fℓ×ℓ
q . For

such matrices corresponding to elements of a quotient
ring, Theorem 1 in [12] shows that there exists an in-
vertible matrix W ∈ Fℓ×ℓ

q such that for any X ∈ Af ,
WX is symmetric. Specifically, if f has a form of
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xℓ − axi − 1 with a ̸= 0 and 1 ≤ i < ℓ, then the
above symmetrization is realized by

W =
(
Ji

Jℓ−i

)
, (3.1)

where Ji :=

(
1

.
.
.

1

)
∈ Fi×i

q . For the subalgebra

Af , we define a subspace Aa,b
f with a, b ∈ N in Faℓ×bℓ

q

containing matrices of the following form X11 . . . X1b

...
. . .

...
Xa1 . . . Xab

 ,

where every Xij ∈ Fℓ×ℓ
q is an element of Af . Further-

more, W (a) denotes an aℓ × aℓ block diagonal matrix
concatenating W ∈ Fℓ×ℓ

q diagonally a times.
From these notations, we can construct a QR-UOV

representing public and secret keys by elements ofAN,N
f

and W (N)AN,N
f := {A · B |A ∈ W (N), B ∈ AN,N

f }.
Note that we here represent the public and secret keys
by matrices as described in Section 2. Before gener-
ating the public and secret keys, we prepare an irre-
ducible polynomial f = xℓ−axi−1 ∈ Fq[x] with a ̸= 0
and 1 ≤ i < ℓ and W ∈ Fℓ×ℓ

q like equation (3.1), We
here take f as an irreducible polynomial for the secu-
rity of the resulting scheme. Then, the key generation
of QR-UOV is described as follows:

(1) Choose Fi (i = 1, . . . ,m) from W (N)AN,N
f as a

symmetric matrix with the lower-right m × m
zero-block like equation (2.2).

(2) Choose an invertible matrix S from AN,N
f ran-

domly.

(3) Compute the public key Pi = S⊤FiS (i = 1, . . . ,m).

Then, Pi (i = 1, . . . ,m) representing the public key

map are elements of W (N)A
(N)
f from Proposition 1 in

[12]. The signing and verification processes are per-
formed in the same way as the plain UOV.

3.2 Reducing Public Key Size

In this subsection, we apply an improved method
restricting the secret key S to a specific compact form,
which was first proposed by Czypek et al. [8].
Before describing the improved method, we prepare

some notations: For the public key Pi (i = 1, . . . ,m)
and the secret key Fi (i = 1, . . . ,m), we define subma-
trices as follows

Pi =

(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
,

Fi =

(
Fi,1 Fi,2

F⊤
i,2 0m×m

)
,

where Pi,1 and Fi,1 are symmetric v × v matrices, Pi,2

and Fi,2 are v × m matrices, and Pi,3 is a symmetric
m×m matrix.

We then aim at limiting the secret key S to the fol-
lowing compact form(

Iv S′

O Im

)
,

where S′ is a v ×m matrix. Then, from Pi = S⊤FiS
(i = 1, . . . ,m), we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2, (3.2)

0m×m = S′⊤Pi,1S
′ − P⊤

i,2S
′ − S′⊤Pi,2 + Pi,3.

By using this equation, in the improved key generation
step, Pi,1, Pi,2 (i = 1, . . . ,m), and S′ are first generated
from random seeds, and Pi,3 (i = 1, . . . ,m) is computed
by

Pi,3 = −S′⊤Pi,1S
′ + P⊤

i,2S
′ + S′⊤Pi,2.

Thus, the public key is composed of m × m matrices
Pi,3 (i = 1, . . . ,m) and the small seed for Pi,1, Pi,2 (i =
1, . . . ,m). The security of QR-UOV is not weakened
by this optimization because this does not affect the
distribution of the public and secret keys.

3.3 EUF-CMA Secure Variant

This subsection introduces a modification of the sig-
nature generation of QR-UOV for the security proof.
Its construction is mainly based on the method pro-
posed by Sakumoto et al. [20].

We here describe the inversion of the central map F
in our modified signature generation. We first choose
values for the vinegar-variables y1, . . . , yv randomly. We
then choose λ-bit random salt r and compute t ∈ Fq by
applying a hash function on the input concatenating a
given message M and the salt r. If the linear system
for the oil-variables xv+1, . . . , xn

F(y1, . . . , yv, xv+1, . . . , xn) = t (3.3)

has solutions, then we obtain the signature by applying
S−1 into (y1, . . . , yv, yv+1, . . . , yn) where (yv+1, . . . , yn)
is a randomly chosen solution of equation (3.3). If there
exists no solution of equation (3.3), then we choose a
new salt and update t until equation (3.3) has solu-
tions.
The main difference from the standard signature gen-

eration algorithm is that if equation (3.3) has no so-
lution, then we choose a new random salt instead of
choosing new vinegar-variables. By doing so, the sig-
nature s satisfying P(s) = Hash(M||r) is uniformly
distributed in Fn

q , and this fact enables us to prove
the EUF-CMA security of QR-UOV in Section 4. For
the efficiency, we confirm that the expected number of
computing t = Hash(M||r) until equation (3.3) has so-
lutions is approximately 2.0 for any parameter sets by
assuming that equation (3.3) is a randomized system
for xv+1, . . . , xn.
See Algorithm 1 ∼ 3 for more details of the key gen-

eration, signature generation, and verification of QR-
UOV with the improvement in Subsection 3.2 and the
modification in this subsection.
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Algorithm 1 KeyGen()

1: seedpk, seedsk ← {0, 1}2λ
2: P1,1, . . . , Pm,1, P1,2, . . . , Pm,2 ← Hash(seedpk)
3: S′ ← Hash(seedsk)
4: for i form 1 to m do
5: Pi,3 ← −S′⊤Pi,1S

′ + P⊤
i,2S

′ + S′⊤Pi,2

6: end for
7: return (pk, sk) =

((
seedpk, {Pi,3}i∈{1,...,m}

)
, seedsk

)

Algorithm 2 Sign(M, pk, sk)

1:
(
seedpk, {Pi,3}i∈{1,...,m}

)
← pk

2: seedsk ← sk
3: P1,1, . . . , Pm,1, P1,2, . . . , Pm,2 ← Hash(seedpk)
4: S′ ← Hash(seedsk)
5: Generate F following equation (3.2).
6: (y1, . . . , yv)← Fv

q

7: repeat
8: r ← {0, 1}λ
9: t← Hash(M||r)

10: until F(y1, . . . , yv, xv+1, . . . , xn) = t has solutions
for (xv+1, . . . , xn).

11: Choose one solution (yv+1, . . . , yn) ∈ Fm
q randomly.

12: s← S−1(y1, . . . , yv, yv+1, . . . , yn)
13: return σ = (r, s)

4 Security Proof

This section discusses the security of QR-UOV with
the modified signature generation in Subsection 3.3.
After introducing two assumptions, based on which the
security proof of QR-UOV can be constructed, and the
standard security definition, we show the statement of
the EUF-CMA security of QR-UOV. We here omit the
proof of the security statement, and our discussion is
mainly following [6].
We first introduce two assumptions for the security

proof of QR-UOV as follows:

Definition 1 (UOV problem) We let MQq,n,m de-
note the set of random quadratic maps with n variables
and m equations over Fq and let UOVq,v,o,m denote the
set of public key maps of UOV with v vinegar-variables,
o oil-variables, and m equations over Fq. The UOV
problem asks to distinguish a random quadratic system
from a UOV public key.
Let A be a UOV distinguisher algorithm. We say the

distinguishing advantage of A is

AdvUOV
q,v,o,m(A) =|Pr[A(P) = 1|P ← MQq,(v+o),m]

− Pr[A(P) = 1|P ← UOVq,v,o,m]|.

Definition 2 (QR-MQ problem) Let QRq,n,m,ℓ be the
set of quadratic maps constructed from m matrices in
W (N)AN,N

f where f is an irreducible polynomial with
degf = ℓ and N = n/ℓ. For a random P ∈ QRq,n,m,ℓ

Algorithm 3 Verify(M, pk, σ)

1:
(
seedpk, {Pi,3}i∈{1,...,m}

)
← pk

2: (r, s)← σ
3: P1,1, . . . , Pm,1, P1,2, . . . , Pm,2 ← Hash(seedpk)
4: t← Hash(M||r)
5: t′ ← P(s)
6: return accept if t = t′ and reject otherwise.

and t ∈ Fm
q , the QR-MQ problem asks to compute s

such that P(s) = t.
Let A be an adversary. We say that the advantage

of A against the QR-MQ problem is

AdvQRMQ
q,n,m,ℓ(A) =

Pr[P(s) = t|P ← QRq,n,m,ℓ, t← Fm
q , s← A(P, t)].

The first assumption is originally utilized for the se-
curity of the plain UOV and thus seems relatively well
understood. By contrast, the second assumption is
inherent in QR-UOV. Therefore, it is one of the im-
portant tasks to correctly evaluate the difficulty of the
QR-MQ problem.
Subsequently, we give the definition of the EUF-

CMA security, which is the standard security definition
for digital signature schemes.

Definition 3 (EUF-CMA security) Let O be a ran-
dom oracle and let A be an adversary. We say the
advantage of A against the EUF-CMA game of a sig-
nature scheme DSS = (KeyGen,SignO,VerifyO) in the
random oracle model is

AdvEUF-CMA
DSS (A) =

Pr[VerifyO(pk,m, σ) = 1|(pk, sk)← KeyGen(),

(m,σ)← AO,SignO(sk,·)(pk)],

where SignO(sk, ·) was not queried on input m.

We then show the EUF-CMA security of the QR-
UOV signature scheme with the modified signature gen-
eration.

Theorem 1 Let A be an EUF-CMA adversary that
runs in time T against QR-UOV in the random oracle
model with parameters (q, v,m, ℓ) and which makes Qs

signing queries and Qh random oracle queries. Then
there exist adversaries B and B′ against the UOV and
QR-MQ problems respectively, that run in time T +
O((Qs +Qh) · poly(q, n,m, ℓ)) such that

AdvEUF−CMA
q,v,m,ℓ (A) ≤ AdvUOV

qℓ,v/ℓ,o/ℓ,m(B)

+QhAdv
QRMQ
q,(v+m),m,ℓ(B

′) + (Qh +Qs)Qs2
−λ + qm.

The proof for this theorem is based on the proof for
Lemma 7 and 8 in [6] and Theorem 1 in [20]. The rea-
son that the security of QR-UOV is reduced into the
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UOV problem with the parameters (qℓ, v/ℓ, o/ℓ,m) is
that the public and secret keys of QR-UOV are equiva-
lent to those of the plain UOV over the extension field
as follows:

Lemma 1 For any parameters (q, v,m, ℓ) of QR-UOV
and an irreducible polynomial f with degf = ℓ, there
exists a one-to-one mapping from the set of the public
and secret keys of QR-UOV with parameter (q, v,m, ℓ)
into that of the plain UOV with v/ℓ vinegar-variables,
m/ℓ oil-variables, and m equations over Fqℓ .

We here show a way of constructing such a one-to-
one map representing the keys of QR-UOV as those of
the plain UOV over Fq[x]/(f) ≈ Fqℓ . For the represen-
tation matrix Pk of the public key of QR-UOV, we here
define an N ×N matrix P̄k over Fq[x]/(f) as follows:

P̄k =

ℓ−1∑
i=0

xiP̄
(i)
k ,

where P̄
(i)
k ∈ FN×N

q with 0 ≤ i ≤ ℓ− 1 satisfies

Pk =

ℓ−1∑
i=0

(
P̄

(i)
k ⊗WΦf

xi

)
.

Similarly, we can construct F̄1, . . . , F̄m and S̄ corre-
sponding to the secret key F1, . . . , Fm and S as follows:

F̄k =

ℓ−1∑
i=0

xiF̄
(i)
k s.t. Fk =

ℓ−1∑
i=0

(
F̄

(i)
k ⊗WΦf

xi

)
,

S̄ =

ℓ−1∑
i=0

xiS̄(i) s.t. S =

ℓ−1∑
i=0

(
S̄(i) ⊗ Φf

xi

)
.

Then, it holds P̄k = S̄⊤F̄kS̄ from Pk = S⊤FkS, and F̄k

has the form like equation (2.2). Thus, these sets P̄k,
F̄k, and S̄ can be seen as the keys of the plain UOV
with N variables and m equations over the extension
field Fq[x]/(f).

5 Parameter Analysis

We first propose various parameters for QR-UOV
satisfying the security level I, III, and V of NIST PQC
standardization project [17]. We then analyze the pub-
lic key and signature size of the proposed parameters
and compare with that of other post-quantum signa-
ture schemes.

5.1 Proposed Parameters

We propose some parameter sets of QR-UOV. These
parameter sets are proposed in accordance with the se-
curity level I, III, and V of the NIST PQC project. We
take 7, 31, and 127 as the number q of the finite field.
The reason that we do not use a finite field with even
characteristics is as follows: If q is even, in a polynomial
obtained as xAx⊤, where A ∈ W (N)AN,N

f , the coeffi-
cients corresponding to the non-diagonal components

of every diagonal block are zero owing to the symme-
try of WΦf

g . For each security level and q, we choose
three parameter sets denoted by (a), (b), and (c), which
are chosen for the following respective purposes:

(a) to make the signature size small (ℓ = 3),

(b) to make the sum of the signature and public key
sizes small (ℓ > 10),

(c) to obtain intermediate results of the above two
conditions (ℓ = 10).

These types are determined according to the fact that
if we take larger ℓ, then the signature size becomes
larger and the public key size becomes smaller. In the
following, we denote each parameter set by the security
level, q, and the type described above. (e.g., (I, 7, a)
denotes a parameter with the security level I, q = 7,
and the type (a).) We then propose some parameter
sets in Table 1 ∼ 3. Here, we do not specify f because
any irreducible trinomial with degree ℓ over Fq can be
taken as f . We further confirmed that there exists such
a polynomial for every proposed parameter set.

Table 1: Security level I parameters: parameters
for QR-UOV satisfying the security level I for the NIST
PQC standardization project (q; the order of the finite
field, v: the number of vinegar-variables, o: the number
of oil-variables and equations, ℓ: block size)

(v,m, ℓ) (a) (b) (c)
q = 7 (189, 72, 3) (2409, 99, 33) (650, 80, 10)
q = 31 (165, 60, 3) (1664, 78, 26) (600, 70, 10)
q = 127 (156, 54, 3) (1440, 72, 24) (550, 60, 10)

Table 2: Security level III parameters
(v,m, ℓ) (a) (b) (c)
q = 7 (291, 111, 3) (4640, 160, 40) (1050, 130, 10)
q = 31 (246, 87, 3) (3783, 117, 39) (890, 100, 10)
q = 127 (228, 78, 3) (3348, 108, 36) (830, 90, 10)

Table 3: Security level V parameters
(v,m, ℓ) (a) (b) (c)
q = 7 (411, 162, 3) (7335, 225, 45) (1450, 180, 10)
q = 31 (324, 114, 3) (4699, 148, 37) (1120, 120, 10)
q = 127 (306, 105, 3) (6000, 144, 48) (1120, 120, 10)

We then present a method of evaluating the secu-
rity of the proposed parameters. The security levels
I, III, and V indicate that a classical attacker needs
more than 2143, 2207, and 2272 classical gates, and a
quantum attacker needs more than 274, 2137, and 2202

quantum gates, respectively, to break the parameters.
For the security of QR-UOV, we confirm that the com-
plexities of the existing four attacks, the direct, Kipnis-
Shamir [15], reconciliation [10], and intersection at-
tacks [5], are larger than the claimed criteria. To eval-
uate the complexity of the direct attack, we assume
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that the difficulty of solving quadratic systems from
the public key of QR-UOV is equivalent to that of solv-
ing randomized quadratic systems. This assumption is
not theoretically proven, but the fact confirmed in [12]
that the experimental degree of regularity of the public
key system of QR-UOV was the same as the theoret-
ical one of the semi-regular systems [2, 3, 4] indicates
the correctness of this assumption. On the other hand,
the other three attacks, the Kipnis-Shamir, reconcilia-
tion, and intersection attacks, are key recovery attacks,
which find the secret key given the public key. These
three key recovery attacks can be performed by see-
ing the public key of QR-UOV not only as one of the
plain UOV with n variables over Fq but also as one of
the plain UOV with N variables over Fℓ

q as described
in Lemma 1. In general, the complexity of the key
recovery attacks on UOV with fewer variables on the
extension field is smaller than or equal to that on UOV
over the base field. Therefore, we estimate the com-
plexity of the key recovery attacks on QR-UOV as that
on the plain UOV with N variables over Fℓ

q. See [12]
for specific formulae to estimate the complexity of the
four attacks on QR-UOV. We show the complexity of
the classical and quantum versions of the four attacks
on the parameter (I, 7, a) in Table 4.

Table 4: The complexity (log2 of the number of gates)
of the direct, Kipnis-Shamir, reconciliation, intersec-
tion attacks on QR-UOV with the parameter (I, 7, a)

attacks
over Fq over Fqℓ

direct KS recon. inter.
classical 152 346 149 242
quantum 91 186 148 175

5.2 Comparison

This subsection analyzes the public key and signa-
ture size of the proposed parameter sets in Subsec-
tion 5.1 and compares with that of other post-quantum
signature schemes.
For each one of the proposed parameter sets, we esti-

mate the public key and signature size. From the same
discussion in [12], the public key size of QR-UOV is

given as ⌈log q⌉ ·
(

m3

2ℓ + m2

2

)
+256 bits, and the signa-

ture size is given as ⌈log q⌉ · n+ 128 bits. We suppose
that the public key and signature of QR-UOV include
a 256-bit seed and a 128-bit salt, respectively, as de-
scribed in Algorithm 1 ∼ 3. Indeed, Table 5 computes
the public key and signature size of the proposed pa-
rameter sets according to the above formulae. We can
confirm that parameters of type (a), (b), and (c) behave
according to their purposes described in Subsection 5.1,
respectively.
Further, we compare the size of the public key and

signature of QR-UOV with that of other post-quantum
signature schemes. To compare with QR-UOV, we
choose two multivariate signature schemes, UOV and
MAYO [6], and two lattice-based signature schemes,

CRYSTALS-DILITHIUM [1] and FALCON [11], the
selected algorithms in the NIST PQC standardization
project [19]. Figure 1 displays the public key and sig-
nature size of the security level I parameters of these
signature schemes. We omit one of the selected algo-
rithms, SPHINCS+, because its public key size is much
smaller, and its signature size is much larger than other
schemes. In Figure 1, we can confirm that our pro-
posed parameters of type (a) have smaller public keys
than UOV, and smaller signatures than MAYO and the
lattice-based signatures. Therefore, we consider that
the type (a) parameters are superior than the other
two types (b) and (c).

Figure 1: Comparison of the public key and signature
size between some candidates of PQC and QR-UOV

6 Conclusion

In this paper, we discussed the security proof and pa-
rameter sets of the QR-UOV. QR-UOV was proposed
at ASIACRYPT 2021 as a variant of the UOV signa-
ture scheme. Because QR-UOV reduces its public key
size compared with the plain UOV, it is considered to
be one of the strong candidates for post-quantum cryp-
tography.
One of our contributions is that we gave the first

formal EUF-CMA security proof for QR-UOV. Our se-
curity proof is essentially based on the proof by Beul-
lens for the MAYO signature scheme, and the proof
is based on two assumptions: the UOV problem and
the QR-MQ problem. This QR-MQ problem is a new
assumption generated by us to construct the security
proof, and thus, further cryptoanalysis for this problem
is necessary to guarantee its security. Another con-
tribution is that we proposed various parameter sets
for QR-UOV with different security levels, the orders
of the finite field, and the purposes. For these pro-
posed parameter sets, we estimated their public key
and signature size in Table 5. Furthermore, we com-
pared our proposed parameters with some lattice-based
signatures, the plain UOV, and MAYO, and we con-
sidered that type (a) parameters with block size ℓ = 3
have an advantage compared with other schemes.
As stated above, one of our future works is to analyze

the difficulty of solving the QR-MQ problem. For the
security of QR-UOV, it would be desirable to theoret-
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Table 5: The public key and signature size of the parameter sets of QR-UOV proposed in Subsection 5.1

parameter (I, 7, a) (I, 7, b) (I, 7, c) (I, 31, a) (I, 31, b) (I, 31, c) (I, 127, a) (I, 127, b) (I, 127, c)
public key (B) 24332 7383 10832 23657 7637 12282 24271 9104 11057
signature (B) 114 957 290 157 1105 435 200 1339 550

parameter (III, 7, a) (III, 7, b) (III, 7, c) (III, 31, a) (III, 31, b) (III, 31, c) (III, 127, a) (III, 127, b) (III, 127, c)

public key (B) 87819 24032 44395 70991 17143 34407 71899 20444 35470
signature (B) 167 1816 459 224 2454 635 284 3040 821

parameter (V, 7, a) (V, 7, b) (V, 7, c) (V, 31, a) (V, 31, b) (V, 31, c) (V, 127, a) (V, 127, b) (V, 127, c)

public key (B) 270673 56985 115457 158421 34257 58532 173676 36320 81932
signature (B) 231 2851 627 290 3045 791 376 5392 1101

ically reduce the difficulty of the QR-MQ problem to
that of the plain MQ problem. Furthermore, obtaining
the performance data of QR-UOV and comparing with
the performance of other PQC candidates is also our
remaining task.
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